超临界流体的性质
它基本上仍是一种气态,但又不同于一般气体,是一种稠密的气态。其密度比一般气体要大两个数量级,与液体相近。它的粘度比液体小,但扩散速度比液体快(约两个数量级),所以有较好的流动性和传递性能。它的介电常数随压力而急剧变化(如介电常数增大有利于溶解一些极性大的物质)。......阅读全文
超临界流体的特点简述
超临界流体是处于临界温度和临界压力以上,介于气体和液体之间的流体,兼有气体液体的双重性质和优点: 溶解性强 密度接近液体,且比气体大数百倍,由于物质的溶解度与溶剂的密度成正比,因此超临界流体具有与液体溶剂相近的溶解能力。 扩散性能好 因黏度接近于气体,较液体小2个数量级。扩散系数介于气体
超临界流体色谱的应用
1.聚苯醚低聚物的分析色谱柱:10m× 63μm i.d.毛细管柱,固定相:键合二甲基聚硅氧烷;流动相:CO2 ;柱温:120 C;程序升压;2.甘油三酸酯的分析四种组分仅双键数目和位置不同,难分离;色谱柱:DB-225 SFC毛细管柱;流动相: CO2 ;从15MPa程序升压到27MPa;2.5h
超临界流体萃取与超临界流体色谱有什么关系吗
所谓超临界e799bee5baa6e79fa5e9819331333363363366流体,是指物体处于其临界温度和临界压力以上时的状态.这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能.而且这种溶解能力随着压力的升高而急
超临界流体萃取与超临界流体色谱有什么关系吗
所谓超临界流体,是指物体处于其临界温度和临界压力以上时的状态.这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能.而且这种溶解能力随着压力的升高而急剧增大.这些特性使得超临界流体成为一种好的萃取剂.而超临界流体萃取,就是利用
超临界流体、超临界CO2萃取的原理
定义: 超临界为超临界流体,是介于气液之间的一种既非气态又非液态的物态,这种物质只能在其温度和压力超过临界点时才能存在。超临界流体的密度较大,与液体相仿,而它的粘度又较接近于气体。因此超临界流体是一种十分理想的萃取剂。 原理: 超临界流体的溶剂强度取决于萃取的温度和压力。利用这种特性,只需改变萃取剂
超临界流体技术的技术优点
由于超临界流体的特殊物理化学性质,超临界流体技术的应用领域不断扩展,超临界流体除了应用于传质萃取外,还可用于颗粒制造、环境治理、化学反应和节能方面。从超临界流体的基础数据、工艺流程到装置设备等方面的研究也不断地深入和全面,但对超临界流体萃取本身的认识不够透彻,在化学反应、传质与传热过程的理论未达成共
超临界流体的基本概念
将超临界流体应用于生产生活中的各个领域,如节能、天然产物萃取、聚合反应、超微粉和纤维的生产,喷料和涂料、催化过程和超临界色谱等来获得一定特性的产品,称为超临界流体技术。
简介超临界流体的应用原理
物质在超临界流体中的溶解度,受压力和温度的影响很大.可以利用升温,降压手段(或两者兼用)将超临界流体中所溶解的物质分离析出,达到分离提纯的目的(它兼有精馏和萃取两种作用).例如在高压条件下,使超临界流体与物料接触,物料中的高效成分(即溶质)溶于超临界流体中(即萃取).分离后降低溶有溶质的超临界流
关于超临界流体的应用原理
物质在超临界流体中的溶解度,受压力和温度的影响很大.可以利用升温,降压手段(或两者兼用)将超临界流体中所溶解的物质分离析出,达到分离提纯的目的(它兼有精馏和萃取两种作用).例如在高压条件下,使超临界流体与物料接触,物料中的高效成分(即溶质)溶于超临界流体中(即萃取).分离后降低溶有溶质的超临界流
超临界流体萃取的影响因素
对于极性较大的溶质,在超临界CO2中溶解较差,SFE很难萃取出来,但若加入一定的夹带剂,以改变溶剂的活性,在一定条件下,就可以萃取出来,而且萃取条件会更低,萃取率更高。常用的夹带剂有甲醇、氯仿等。夹带剂的种类可根据萃取组分的性质来选择,加入的量一般通过实验来确定。应用自Hanay和Hogarth
超临界流体的历史发展介绍
超临界流体具有溶解其他物质的特殊能力,1822年法国医生Cagniard首次发表物质的临界现象,并在1879年即被Hannay和Hogarth二位学者研究发现无机盐类能迅速在超临界乙醇中溶解,减压后又能立刻结晶析出.但在当时由于技术,装备等原因未能更加深入地研究.时至20世纪30年代,Pilat
超临界流体的发展历史介绍
超临界流体具有溶解其他物质的特殊能力,1822年法国医生Cagniard首次发表物质的临界现象,并在1879年即被Hannay和Hogarth二位学者研究发现无机盐类能迅速在超临界乙醇中溶解,减压后又能立刻结晶析出.但在当时由于技术,装备等原因未能更加深入地研究.时至20世纪30年代,Pilat
超临界流体的广泛应用
利用超临界流体进行萃取.将萃取原料装入萃取釜。采用二氧化碳做为超临界溶剂。二氧化碳气体经热交换器冷凝成液体,用加压泵把压力提升到工艺过程所需的压力(应高于二氧化碳的临界压力),同时调节温度,使其成为超临界二氧化碳流体。二氧化碳流体作为溶剂从萃取釜底部进入,与被萃取物料充分接触,选择性溶解出所需的
关于超临界流体的应用介绍
如超临界流体萃取(supercritical fluid extraction,简称SFE)、超临界水氧化技术、超临界流体干燥、超临界流体染色、超临界流体制备超细微粒、超临界流体色谱(supercritical fluid chromatography)和超临界流体中的化学反应等,但以超临界流体
超临界流体萃取的新技术
长期以来,对超临界流体萃取技术的产业化,主要是单纯超临界CO2的间隙式萃取,处理的物料也多以固体植物为主,得到的几乎都是粗提混合物。为了得到高纯度的产品,德国、日本、澳大利亚、 意大利等国用于精制天然维生素-E、精油脱萜、提取高纯的不饱和脂肪酸等; 法国用于从啤酒及葡萄酒中分离乙醇制备无醇啤酒及
超临界流体的性能有哪些?
超临界流体由于液体与气体分界消失,是即使提高压力也不液化的非凝聚性气体。超临界流体的物性兼具液体性质与气体性质。它基本上仍是一种气态,但又不同于一般气体,是一种稠密的气态。其密度比一般气体要大两个数量级,与液体相近。它的粘度比液体小,但扩散速度比液体快(约两个数量级),所以有较好的流动性和传递性
超临界流体萃取技术的应用
超临界流体萃取技术是七十年代末才兴起的一种新型生物分离精制技术.近年来发展迅速,特别是1978年在西德埃森举行全世界第一次“超临界气体萃取”的专题讨论会以来,被广泛应用于化学、石油、食品、医药、保健品等领域,受到世界各国的普遍重视,在我国已被列为九五期间国家重点开发的高科技项目。下面就超临界
超临界流体色谱柱的特点
超临界流体色谱柱所具备的特点: 1、采用低粘度的超临界流体作为流动相,可以设置高于液相色谱的方法流速,使分离速度快于液相色谱,效率更高。 2、由于超临界流体的扩散系数介于气体和液体之间,所以峰展宽相比气体流动相更小。 3、不同压力下对样品的溶解能力不同,样品溶解度随超临界流体的密度增加而增加。
影响超临界流体萃取的因素
萃取压力的影响萃取压力是SFE最重要的参数之一,萃取温度一定时,压力增大,流体密度增大,溶剂强度增强,溶剂的溶解度就增大。对于不同的物质,其萃取压力有很大的不同。萃取温度的影响温度对超临界流体溶解能力影响比较复杂,在一定压力下,升高温度被萃取物挥发性增加,这样就增加了被萃取物在超临界气相中的浓度,从
超临界流体色谱仪
超临界流体色谱系统是一种用于化学领域的分析仪器,于2009年7月15日启用。 技术指标 CO2流速:0.5-10ml/min;改性剂流速:0.01-10ml/min; 基线噪声: ±2.0×10-5 AU/cm@220nm, 基线漂移: 3.0×10-4 AU/小时; 工作压力: 400ba
超临界流体色谱法
超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。
超临界流体萃取技术概述
1、技术原理超临界流体萃取分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单
超临界流体萃取技术介绍
超临界流体萃取是用超临界流体作为萃取剂,从各种复杂的样品中,把所需要的组分分离提取出来的一种分离提取技术。超临界流体萃取技术用于色谱样品的处理中,可从复杂的样品中将预测组分分离提取出来,制备成合适于色谱分析的样品。超临界流体的密度与液体相近,与液体一样很容易溶解其他物质;另一方面,超临界流体的黏度略
超临界流体色谱法
一、超临界流体色谱的定义 使用超过临界温度和临界压力的流体(Supercritical Fluid)作流动相进行分析的色谱法称为超临界流体色谱法。即流动相不是气体、也不是液体,而是单一态的流体。 二、超临界流体色谱(SFC)的特点 SFC方法的产生及其发展,是由它本身的特点所决定的,具有与GC及LC
超临界流体色谱法
超临界流体色谱法 supercritical fluid chromatography 以超临界流体作为流动相(固定相与液相色谱类似)的色谱方法。超临界流体即为处于临界温度及临界压力以上的流体,它具有对分离十分有利的物化性质,其扩散系数和黏度接近于气体,因此溶质的传质阻力较小,可以获得快速高效的分离
超临界流体色谱法
色谱是用于样品组分分离的一种方法,组分在两相间进行分配,一相为固定相,另一相为流动相。固定相可以是固体或涂于固体上的液体,而流动相可以是气体、液体或超临界流体。超临界流体色谱(Supercritical fluid chromatography) 就是以超临界流体做流动相依靠流动相的溶剂化能力来进行
超临界流体萃取仪概述
超临界流体萃取仪是一种用于材料科学领域的分析仪器,于2011年11月11日启用。 技术指标 高压二氧化碳泵流速: 200 g/min,操作压力: 达600 bar,配有卸压装置,循环冷却剂冷却泵头。电子加热热交换器过程链接:管路1/8”,温度达150℃T体萃取系统(SFE)。高压萃取器体积:
什么是超临界流体萃取?
超临界流体萃取(Supercritical Fluid extrac-ion,SPE)是一项新型提取技术,超临界流体萃取技术就是利用超临界条件下的气体作萃取剂,从液体或固体中萃取出某些成分并进行分离的技术。 超临界条件下的气体,也称为超临界流体(SF),是处于临界温度(Tc)和临界压力(Pc)
超临界流体萃取技术(SFE)
超临界流体(SCF)是温度与压力均在其临界点之上的流体,性质介于气体和液体之间,有与液体相接近的密度,与气体相接近的粘度及高的扩散系数,故具有很高的溶解能力及好的流动、传递性能,可代替传统的有毒、易燃、易挥发的有机溶剂。最常用的SCF-CO2由于具有临界条件温和(Tc=31.3℃.Pc=7.48×1
超临界流体萃取原理介绍
超临界流体萃取的基本原理:当气体处于超临界状态时,成为性质介于液体和气体之间的单一相态,具有和液体相近的密度,粘度虽高于气体但明显低于液体,扩散系数为液体的10~100倍,因此对物料有较好的渗透性和较强的溶解能力,能够将物料中某些成分提取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加