亚麻酸分解产生其他化合物介绍
亚麻酸分解产生其他化合物除了通过 β-氧化分解成乙酰CoA外,亚麻酸还可以在脂肪氧化酶的作用下生成9-或13-过氧耀慕亚麻酸,以此为前体可以合成环氧化物、醛酸、酮酸等。其中13-过氧羟基亚麻酸通过重排、环化、还原后可以生成植物生长调节物质茉莉酸。......阅读全文
在植物体内的生理功能
亚麻酸在植物体内属于常见脂肪酸,一般作为膜脂脂肪酸的基本成分之一。尽管如此,其在大多数植物的种子中含量却非常低,但仍有部分植物如亚麻、杜仲、琉璃苣(紫草科植物,其主要成分为γ-亚麻酸)、黑加仑(虎耳草科植物)。亚麻酸是植物体重要物质和能量来源虽然亚麻酸作为贮存脂肪酸,在碳链长度上与硬脂酸和油酸等相同
亚麻酸在植物体内的生理功能介绍
亚麻酸在植物体内属于常见脂肪酸,一般作为膜脂脂肪酸的基本成分之一。尽管如此,其在大多数植物的种子中含量却非常低,但仍有部分植物如亚麻、杜仲、琉璃苣(紫草科植物,其主要成分为γ-亚麻酸)、黑加仑(虎耳草科植物)。亚麻酸是植物体重要物质和能量来源虽然亚麻酸作为贮存脂肪酸,在碳链长度上与硬脂酸和油酸等相同
盐的分解反应介绍
盐的分解反应碳酸盐、硝酸盐、铵盐一般都较易分解,且反应表现出一定的规律性。1、碳酸盐的分解:碳酸盐==△或高温==对应金属氧化物+CO₂↑(1)碳酸盐的分解碳酸钙分解【CaCO3==高温==CaO+CO2↑】碳酸铜分解【CuCO3==高温==CuO+CO2↑】(2)碳酸氢盐(碳酸盐的酸式盐)的分解K
酸的分解反应介绍
1、一元酸分解盐酸分解【2HCl==电解==H2↑+Cl2↑】硝酸分解【4HNO3==光照或△==4NO2↑+O2↑+2H2O】次氯酸分解【2HClO==光照==2HCl+O2↑】氢溴酸分解【2HBr==通电==H2↑+Br2】氢碘酸分解【2HI==△==H2↑+I2(可逆)】甲酸分解【CH2O2=
亚麻酸的亚麻酸基本参数
亚麻酸基本参数分子式分子量碘值硫代氰酸酯值折光率熔点沸点比重C18H30O2278.4296181.198.7(11.5/D)1.4715;(20/D)1.4699;(21.5/D)1.4683;(50/D)1.4288-12℃202 ℃/1.4毫米汞柱;230℃/16毫米汞柱1 8/4℃)0.90
γ亚麻酸和二高γ亚麻酸含量测定
摘要:建立了γ-亚麻酸和二高γ-亚麻酸含量测定的气相色谱面积归一化方法。γ-亚麻酸和二高γ-亚麻酸在样品处理和色谱条件上是完全一致的,仅是出峰时间上有差别,经精密度、重现性、回收率实验,γ-亚麻酸RSD分别为1.51 、1、89%和0.98%,二高γ-亚麻酸RSD分别为1.45 、1.15%和0
关于α亚麻酸的基本信息介绍
α-亚麻酸(α-lenolenic acid)最重要的生理功能首先在于它是n-3系列多不饱和脂肪酸的母体,在体内代谢可生成DHA和EPA。由于DHA是脑和视网膜中两种主要的多不饱和脂肪酸之一,所以,许多动物试验表明,膳食中α-亚麻酸,特别是在极度或长期缺乏情况下,会出现相应缺乏症状,出现视觉循环
关于亚麻酸的基本信息介绍
亚麻酸的学名为顺-9,顺-12,顺-15-十八碳三烯酸,速记法名称为18:3ω-3,是一种含有三个双键的ω-3脂肪酸。 [1] 亚麻酸以甘油酯的形式存在于深绿色植物中,是构成人体组织细胞的主要成分。 [2] 有两种异构体:α-亚麻酸和γ-亚麻酸。前者学名“顺式十八碳三烯-9,12,15-酸"。
亚麻酸的相关内容介绍
按照脂肪烃的饱和程度,即是否存在双键或二键(一般为双键),脂肪酸又可分为饱和脂肪酸(saturated fatty acids,SFA)和不饱和脂肪酸(unsaturated fatty acids,UFA),其中不饱和脂肪酸可以根据双键的多少分为单不饱和脂肪酸(mono-unsaturatcd
关于α亚麻酸的增强智力的介绍
α—亚麻酸而来的二十二碳六烯酸(DHA)在脑神经和视网膜中大量存在,同时,从胎儿到哺乳这个期间脑的发育是非常重要的。到离乳时脑细胞分裂大部分已结束,以后神经细胞数也不怎么增加,所以妊娠期到哺乳期的α—亚麻酸补给是非常必要的。 此外,α—亚麻酸还有抗癌、抗衰老、抗抑郁、预防老年性痴呆等方面的作用
关于α亚麻酸的体内代谢的介绍
食物中的α—亚麻酸主要经肠道直接吸收,在肝脏贮存,经血液运送至身体各个部位,直接成为细胞膜的结构物质。其次,α—亚麻酸作为ω—3系多不饱和脂肪酸的母体,在碳链延长酶和脱氢酶的作用下,经碳链延长和去饱和可以代谢产生多种高活性物质,其中最重要的有EPA和DHA、EPA是三系前列腺素的前体物质,在脂氧
关于亚麻酸的注意事项介绍
亚油酸和亚麻酸在前列腺素合成的过程中消耗同一种酶,却产生作用完全相反的前列腺素。因此它们在体内又是竞争和相互抑制的关系。亚油酸代谢产物过多可引起炎症、过敏等;人为补充过量亚麻酸代谢产物(EPA/DHA)则引起免疫力低下,伤口不容易止血。 [8] α-亚麻酸摄取过量,也可能会引起消化不良、恶心等症
关于α亚麻酸的调控功能的介绍
α—亚麻酸的某些生理作用是通过调节相关酶的活性来实现的。α—亚麻酸改变生物膜中一些膜结合酶的活性如腺苷环化酶、5,核苷酸酶及Na-K-ATP酶对脂肪酸的敏感,酶活性的改变也是对膜结构变化的一种适应。 α—亚麻酸的降血脂作用一方面是通过对代谢率的调节来实现,另一方面则是通过抑制有关的脂肪和甘油合
关于亚麻酸的生态进化意义介绍
基于亚麻酸主要生理功能分析,可以认为亚麻酸应当具有令少几个生态和进化意义: (1)亚麻酸应当是植物适应外界温度逆境的重要物质基础 在生态和进化上亚麻酸积累可能是植物系统进化在低温期的一种重要适应性手段。目前,所知的很多富含亚麻酸植物如杜仲、珙桐等,均是冰期后的重要孑遗植物。 (2)基于亚麻
化合物红外吸收光谱是怎样产生的
红外的能量是很低的,而红外光谱也叫振动转动谱,由此可知其产生的原因分子是运动的,这从初中就知道,可是它的具体形式,并不是一个运动就能解决的.深入去看,有振动.简单来看就有六种振动了.基本就是键长的改变和键角的改变.显然,这就像弹簧一样,振幅越大,能量越高但分子跟光作用有一个特点,那就是只吸收刚好两个
硝酸银分解反应实验中产生的氧气对环境的影响
在硝酸银分解反应实验中产生的氧气量通常较少,从这个实验所产生的少量氧气对环境的直接影响非常微小,几乎可以忽略不计。但从宏观角度来看,氧气是维持地球上大多数生命活动所必需的气体。在自然环境中,植物通过光合作用产生大量的氧气,维持了大气中氧气的平衡,支持了生物的呼吸和各种氧化反应。如果从更广泛的环境和生
真空管的蓝光产生因素和其他相关内容
使用300B真空管的用家一定有一个经验,将扩大机电源打开,室内灯光熄灭,此时300B的灯丝会发出昏黄的光线,同时在真空管的顶端,有时候会出现像极光一样的神秘蓝光。蓝光看起来是绵细的、柔软的,略带一些神秘。它像极光一样,有时会扭曲飘动,似有若无的在真空管内发亮。第一次见到蓝光的人不免对它 产生好奇
关于甘油磷脂的分解介绍
在生物体内存在一些可以水解甘油磷脂的磷脂酶类,其中主要的有磷脂酶A1、A2、B、C和D,它们特异地作用于磷脂分子内部的各个酯键,形成不同的产物。这一过程也是甘油磷酯的改造加工过程。 磷脂酶A1 自然界分布广泛,主要存在于细胞的溶酶体内,此外蛇毒及某些微生物中亦有,可有催化甘油磷脂的第1位酯键
热分解温度的相关介绍
在受热情况下,大分子开始裂解的温度称之为热分解温度,这是聚合物重要的热性能之一。热分解温度是高聚物材料开始发生交联、降解等化学变化的温度。它是高聚物材料成型加工时的最高温度,因此,黏流态的加工区间是在黏流温度与热分解温度之间。有些高聚物的黏流温度与热分解温度很接近,例如聚三氟氯乙烯及聚氯乙烯等,
分解反应的反应现象介绍
水在直流电的作用下分解【2H2O==通电==2H2↑+O2↑】现象:电极上有气泡产生,V(H2):V(O2)=2:1,正极产生的气体(O2)能使带火星的木条复燃,负极产生的气体(H2)能在空气中燃烧,产生淡蓝色火焰。加热碱式碳酸铜【Cu2(OH)2CO3==△==2CuO+CO2↑+H2O】现象:绿
关于糖原分解的介绍
糖原分解不是糖原合成的逆反应,除磷酸葡萄糖变位酶外,其它酶均不一样,反应包括: 这样将糖原中1个糖基转变为1分子葡萄糖,但是磷酸化酶只作用于糖原上的α(1→4)糖苷键,并且催化至距α(1→6)糖苷键4个葡萄糖残基时就不再起作用,这时就要有脱支酶(debranching enzyme)的参与才可
关于亚麻油亚麻酸的作用介绍
高度保护视力:如前所述,视网膜中视细胞外节DHA特别多。有人报道,如果缺乏视力就下降,网膜反射能恢复时间就延长。因为网膜一碰到光,就起化学反应,由此而产生电位变化,通过视神经传到脑。分别用ω-6系列红花油、α—亚麻酸对大鼠进行两代饲养,然后给予强度不同的光,产生电位变化,来比较细胞膜电位图α波和
关于α亚麻酸的调节血脂作用的介绍
血脂异常严重威胁人类健康和生命,它是动脉粥样硬化病灶形成和进展的重要危险因素,已证实调脂药物可以延缓动脉粥样硬化事件(如心肌梗死和卒中)的发生。很多实验得出α-亚麻酸具有降低血清总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白和极低密度蛋白,升高血清高密度脂蛋白的作用。 在α—亚麻酸降低血清胆
关于α亚麻酸的历史事件介绍
1961年---西方主要发达国家针对饱和脂肪酸摄入过量,营养失衡、过早发胖的社会现象,以及脑力工作者因工作、学习压力而普遍产生的大脑和视力器官疲劳症状,开始了ω-3系不饱和脂肪酸的开发研究。 1965年---研究集中在ω-3系多不饱和脂肪酸的母体α-亚麻酸领域。 1975年---英国科学家得出
关于亚麻酸的降低血脂的作用介绍
很多人都将实验中得出的α—亚麻酸具有降低血清总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白、极低密度脂蛋白及升高血清高密度脂蛋白的作用。 临床上给与204例高血脂患者服用α-亚麻酸进行观察的结果表明,高的血清甘油三脂患者服用后,血清TG值下降显著。第五周时接近正常值,第10周呈继续降低趋势(
其他植物激素的介绍
主要有油菜素甾醇、水杨酸、茉莉酸等,比较公认的第六大类植物激素是油菜素甾醇(Brassinosteroid)。油菜素甾醇是甾体类激素,与动物甾体激素的作用机理不同。其具有促进细胞伸长和细胞分裂、促进维管分化、促进花粉管伸长而保持雄性育性、加速组织衰老、促进根的横向发育、顶端优势的维持、促进种子萌发等
硝酸银分解反应实验中产生的氧气对环境有什么影响?
在硝酸银分解反应实验中产生的氧气量通常较少,从这个实验所产生的少量氧气对环境的直接影响非常微小,几乎可以忽略不计。但从宏观角度来看,氧气是维持地球上大多数生命活动所必需的气体。在自然环境中,植物通过光合作用产生大量的氧气,维持了大气中氧气的平衡,支持了生物的呼吸和各种氧化反应。如果从更广泛的环境和生
热分解的基本内容介绍
热分解是指加热升温使化合物分解的过程。高分子材料在热作用下也会产生热分解作用,烃类高分子热分解最终产物是碳和氢及低级的烃类和沥青。环化聚丙烯腈的热分解可得到碳纤维[1]。对于高分子废物来说,热分解是指高分子废料在隔绝空气或还原气氛中、高温裂解成低分子气体、燃料油和焦炭的过程,适用于混有聚乙烯、聚
关于分解代谢的应用介绍
酵母菌 酵母菌的代谢作用如同许多微生物一样包含有能的增加或积聚(异化作用)和能量的消耗或生物合成途径(同化作用),这些过程包括简单的原子、原子团或电子的转移。生长就是这些氧化还原作用反应平衡的作用,以异化作用释放出的部分能量,可用来促使蛋白质及细胞所需要的其他物质的合成。酵母菌在生产中的应用十
催化分解乳糖的相关介绍
乳糖酶在工业上主要用于乳制品工业,利用其水解作用分解乳制品中的乳糖,生产低乳糖或无乳糖乳制品,供乳糖不耐受的广大人群食用。另外,酸性乳糖酶可以制成医用乳糖酶制剂,或者添加到奶粉中制成特殊用途奶粉,临床上用于症状性乳糖不耐受的治疗,尤其是以乳制品为主要营养来源的婴幼儿,乳糖酶制剂是婴幼儿乳糖不耐受