X射线衍射峰强度影响因素有哪些
峰位由晶胞大小和形状决定的;峰强(高)是由晶胞里原子的种类和原位置决定的。纳米材料753衍射峰的位置是由材料的结构峰强(相对高)代表材料的质量丰度等isord楼上的对于强度的说法,必须完全的基于仪器检测条件一致的情况,如果仪器不一样,参数设定或狭缝不一样,强度就没有可比性。峰位取决于晶体结构,结构没有大变化,峰位一般没变化(纳米材料除外)。峰强(考虑相对值,绝对值个人感觉没多大意义),影响因素就很多了,一般要和峰形结合起来看。对于混合物来说,强度主要因素就是含量了。对于纯相,峰形(半峰宽)变宽,强度下降,就是结构变差,结晶度下降等;峰形没变化(半峰宽小),强度变化,如果是块体可考虑择优取向,粉体的就复杂了,我们也没有遇到过。......阅读全文
X射线衍射仪工作原理
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的
多晶X射线衍射的原理
多晶衍射仪法的原理与照相法类似,只是用射线记数器记录衍射线的位置和强度,加上与电子计算机联用,可使测量的准确度高、分辨能力强且迅速方便,并能自动将样品的数据与计算机贮存的标准数据对照而鉴定样品的物相。
什么是x射线衍射仪
特征X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。 X射线衍射仪的英文名称是
X射线衍射仪工作原理
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的
X射线衍射仪工作原理
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的
多晶x射线衍射的简介
用 X射线衍射法研究多晶样品的成分和结构的一种实验方法,也称粉末法。多晶是指由无数微细晶粒组成的细粉状样品或块状样品。
X射线衍射的应用介绍
X 射线衍射技术已经成为最基本、最重要的一种结构测试手段,其主要应用主要有以下几个方面:物相分析物相分析是X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。
X射线衍射分析的简介
X射线衍射相分析(phase analysis of xray diffraction)利用X射线在晶体物质中的衍射效应进行物质结构分析的技术。每一种结晶物质,都有其特定的晶体结构,包括点阵类型、晶面间距等参数,用具有足够能量的x射线照射试样,试样中的物质受激发,会产生二次荧光X射线(标识X射线
x射线衍射法的原理
原理:将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已
X射线衍射仪工作原理
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的
X射线衍射技术分析内容
X射线衍射技术可以分析研究金属固溶体、合金相结构、氧化物相合成、材料结晶状态、金属合金化、金属合金薄膜与取向、焊接金属相、各种纤维结构与取相、结晶度、原料的晶型结构检验、金属的氧化、各种陶瓷与合金的相变、晶格参数测定、非晶态结构、纳米材料粒度、矿物原料结构、建筑材料相分析、水泥的物相分析等。
X射线衍射仪工作原理
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的
X射线衍射仪工作原理
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的
台式X射线衍射(XRD)仪
MiniFlex2012年最新添加了MiniFlex系列的台式X射线衍射(XRD)分析仪。第5代MiniFlex可以进行多晶材料的定性分析与定量分析,是一般用途的X射线分衍射仪。本次MiniFlex提供两种类型以供选择,当运行600W(X射线管)时,MiniFlex600的能量比其他台式模型高两倍,
X射线衍射仪的结构
X射线衍射仪的结构X射线衍射仪由X射线发生器、测角仪、样品台、检测器、测量记录系统、计算机系统等构成(如下图所示)。总体可分为X射线发生系统、测角及探测系统、数据记录与处理系统。
X射线衍射仪的原理
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物
x射线衍射法的原理
原理:将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已
X射线衍射仪工作原理
X射线衍射仪工作原理x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以
X射线单晶衍射的简介
X射线单晶衍射(X-ray diffraction of single crystal)是2014年全国科学技术名词审定委员会公布的药学名词,出自《药学名词》第二版。 当晶体被X射线照射时,晶体中各原子的散射X射线会叠加起来。当X射线为单色时,各原子的散射X射线发生干涉,在特定的方向上产生强的
X射线粉末衍射法
一、基本原理:当一束单色X射线投射到晶体上,晶格中原子散射的电磁波互相干涉和相互叠加,在某一方向得到加强或抵消的现象,称为衍射。相应的方向称为衍射方向。晶体衍射X射线的方向与构成晶体的晶胞大小、形状及入射的X射线波长有关。 衍射光的强度与晶体内原子的类型和晶胞内原子的位置有关,所以,从衍射光束
X射线衍射仪基本构造
X射线衍射仪的形式多种多样,用途各异,但其基本构成很相似,为X射线衍射仪的基本构造原理图,主要部件包括4部分。(1) 高稳定度X射线源 提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。(2) 样品及样品位置取向的调整机构系统 样品须是单晶、粉末、
X射线粉末衍射仪
XRD即X射线衍射,通常应用于晶体结构的分析。X射线是一种电磁波,入射到晶体时在晶体中产生周期性变化的电磁场。引起原子中的电子和原子核振动,因原子核的质量很大振动忽略不计。振动着的电子是次生X射线的波源,其波长、周相与入射光相同。基于晶体结构的周期性,晶体中各个电子的散射波相互干涉相互叠加,称之为衍
X射线衍射分析的简介
定义: X射线衍射分析(X-ray diffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。 分析原理 当一束X射线入射到晶体时,首先被原子(电子)所散射,每个原子都是一个新的辐射源,向空间辐射出与入射波同频率的电磁波。由于晶体是由
微区X射线衍射仪
微区X射线衍射仪是一种用于物理学、化学、材料科学、考古学领域的分析仪器,于2015年1月12日启用。 技术指标 采用新一代的陶瓷X光管技术,焦斑位置稳定,衰减小,寿命长 ; 全自动可变狭缝,可以自由选择固定狭缝大小或固定测量面积模式;高精度立式测角仪,样品水平放置,最小步长及角度重复性皆为0
多晶X射线衍射的原理
多晶衍射仪法的原理与照相法类似,只是用射线记数器记录衍射线的位置和强度,加上与电子计算机联用,可使测量的准确度高、分辨能力强且迅速方便,并能自动将样品的数据与计算机贮存的标准数据对照而鉴定样品的物相。
什么是x射线衍射分析
X射线衍射相分析(phase analysis of xray diffraction)利用X射线在晶体物质中的衍射效应进行物质结构分析的技术。X射线衍射相分析(phase analysis of xray diffraction)利用X射线在晶体物质中的衍射效应进行物质结构分析的技术。每一种结晶物
x射线衍射法的原理
原理:将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已
X射线衍射仪工作原理
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的
x射线衍射仪的应用
油田录井 Olympus便携式X 射线衍射仪BTX可能直接分析出岩石的矿物组成及相对含量,并形成了定性、定量的岩性识别方法,为录井随钻岩性快速识别、建立地质剖面提供了技术保障。 每种矿物都具有其特定的X 射线衍射图谱,样品中某种矿物含量与其衍射峰和强度成正相关关系。在混合物中,一种物质成分的
X射线衍射仪的应用
每种矿物都具有其特定的X 射线衍射图谱,样品中某种矿物含量与其衍射峰和强度成正相关关系。在混合物中,一种物质成分的衍射图谱与其他物质成分的存在与否无关,这就是X 射线衍射做相定量分析的基础。X 射线衍射是晶体的“指纹”,不同的物质具有不同的X 射线衍射特征峰值(点阵类型、晶胞大小、晶胞中原子或分子的