遗传学多体的概念
中文名称多体英文名称polysomic定 义二体中某同源染色体在三条以上的细胞或个体。应用学科遗传学(一级学科),细胞遗传学(二级学科)......阅读全文
细胞衰老的遗传学派
认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。 有以下三种学说 第一种 细胞有限分裂学说 L.Hayflick (1961)报道,人的纤维细胞在体外培养时增殖次数是有限的。后来许多实验证明
细胞遗传学的研究
从细胞遗传学衍生的分支学科主要有体细胞遗传学——主要研究体细胞,特别是离体培养的高等生物体细胞的遗传规律;分子细胞遗传学——主要研究染色体的亚显微结构和基因活动的关系;进化细胞遗传学——主要研究染色体结构和倍性改变与物种形成之间的关系;细胞器遗传学——主要研究细胞器如叶绿体、线粒体等的遗传结构;
毒理遗传学的介绍
环境因素造成的遗传毒理效应包括三个方面:①突变形成,环境因素诱发生殖细胞的基因突变(点突变)和染色体畸变,从而造成子代遗传性疾病发生频率的增加,②癌形成,环境因素诱发体细胞基因突变或在亲代遗传的突变形成的背景上诱发体细胞突变,引起的体细胞恶性转化为癌细胞的作用;③致畸效应,环境因素作用于发育中的
细胞遗传学的简介
细胞遗传学,同时也是在细胞层次上进行遗传学研究的遗传学分支学科 行为和传递等机制及其生物学效应。 遗传学和细胞学结合建立了细胞遗传学,主要是从细胞学的角度, 特别是从染色体的结构和功能, 以及染色体和其他细胞器的关系来研究遗传现象, 阐明遗传和变异的机制。 细胞遗传学是遗传学与细胞学相结合的
细胞遗传学的分析
染色体携带着遗传物质。了解染色体的结构和功能是遗传学的重要任务之一。染色体数目和结构的异常伴同许多疾病,包括与妇产科有关的遗传性疾病。所以在显微镜下作染色体的分析是检查和诊断妇产科遗传病症的有用工具。 1、进行细胞遗传学分析的指针: ① 肯定和排除某些已知的染色体综合征的诊断; ② 性分化
癌遗传学
Serial Analysis of Gene Expression (SAGE) SAGE is a powerful tool that allows the analysis of overall gene expression patterns with digital analysis.
基于量子点的在体、实时、多色淋巴结成像
量子点(Quantum dots,QDs)的荧光亮度非常高,同时发射光谱狭窄而对称,半峰宽小于30nm,可实现单一波长的多色激发,而且多个发射光之间的相互干扰小,因而在可见光范围内能够实现五种不同颜色的同时成像观察。NIH研究人员Kobayashi H等,将五个不同发射波长的量子点(ca
最新发现!多代父体肥胖降低子代精子质量
安徽医科大学公共卫生学院教授王华、徐德祥团队和安徽医科大学第一附属医院教授贺小进、曹云霞团队发现,多代父体肥胖通过表观遗传修饰降低子代精子质量。相关研究成果日前发表于《自然-通讯》。据世界卫生组织报道,不孕不育已成为继心血管疾病和肿瘤之后威胁人类健康的第三大疾病。国内外多项大样本调查发现,一般人群中
最新发现!多代父体肥胖降低子代精子质量
原文地址:http://news.sciencenet.cn/htmlnews/2024/3/518450.shtm
一体化多效澄清系统包括什么设备?
山东奥清环保小编带大家了解一下一体化多效澄清系统包括什么设备? (1)一体化多效澄清系统简介 一体化多效澄清系统是一种先进的自来水排水处理技术,该系统基于加载沉淀池的基础上进行改进,集成了化学混凝、机械搅拌、加载沉淀、斜管分离等多种有利于固液分离的技术。既保持了加载沉淀池的高速、紧凑、出水水
多一条X染色体女性因此更长寿
科学家最新一项研究表明,女性寿命比男性更长,这是因为她们非常幸运,拥有两条X染色体。 据称,女性比男性长寿是由于女性免疫系统更强,而且她们吸烟、喝酒和打架的倾向性行为更少。而且,她们与自然界其他物种相比,也是寿命较长的,目前研究人员认为她们的染色体对于长寿非常重要。 女性拥有XX染色体,男
科学家首次观测到多体配对赝能隙
原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517393.shtm中国科学技术大学潘建伟院士、姚星灿教授、陈宇翱教授等人基于强相互作用的均匀费米气体,首次观测到了由多体配对产生的赝能隙。这项研究首次确立了配对赝能隙的存在,为高温超导机理中的电子预配对
海星多羟基甾体皂甙Linckoside-A和B首次全合成
在一些海洋无脊椎动物,特别是海星和海参中,存在大量的皂甙类化合物。这些次级代谢产物被认为是行动缓慢的海星和海参的防御性物质,用于抵抗被捕食、寄生和感染等。因此,人们相信这类化合物具有诸如抗肿瘤和抗微生物等生理活性,有希望被发展成为治疗药物。然而,这些化合物结构复杂多样,难以分离获取,也因此难以开
“材料—结构—性能一体化增材制造”的概念被提出
南京航空航天大学材料科学与技术学院、江苏省高性能金属构件激光增材制造工程实验室教授顾冬冬团队,提出材料—结构—性能一体化激光金属增材制造的整体性概念。5月28日,相关综述论文发表于《科学》。 高性能金属构件是航空、航天、交通、能源等现代工业的基石,且高端装备的服役性能很大程度上取决于构件的高性
发改委再批多电力项目-概念股或进入速升通道
继12月3日发改委密集批复安徽、四川和江苏多项电力项目后,昨天发改委密集批复了福建、湖南、山东和河北等共5项输变电项目和3项变电站扩建项目,总工程投资达43亿元。市场分析人士认为,随着新一轮基建投资力度的加大,电气行业有望进入速升通道。 金融界首席分析师赵欢表示,此次新批准的输变电项目预计
我国科学家实现可扩展多体纠缠态的制备和测控
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/507944.shtm9月5日,记者从中国科学技术大学获悉,该校潘建伟、苑震生教授等与清华大学马雄峰副教授、复旦大学青年副研究员周游合作,使用光晶格中束缚的超冷原子,通过制备二维原子阵列、产生原子比特纠缠对
烧结烟气多污染物一体化控制工艺的应用
基于我国“十三五”期间烧结烟气多污染物的排放标准要求,从工艺系统、实际案例、特点分析等方面对国内已工业化应用的典型多污染物一体化控制工艺—活性焦(炭)法、烟气循环技术、有机催化技术等进行了评述和分析,并提出了多污染物协同控制应用的建议。图片来源于网络 1.前言 烧结属于钢铁冶炼的重要工序之一
试管婴儿男多女少-是X染色体惹的祸?
一直以来,人们都在为越变越短的Y染色体操心,认为基因的不断丢失会最终导致男性“消失”在这个世界上。但研究证明,这种操心有点儿杞人忧天,Y染色体的基因丢失只出现在生命演化的早期,近2500万年以来,Y染色体都稳定得很。 虽然暂时不用担心Y染色体,但这次X染色体又出了问题。日前发表在美国《国家科学
EMBO:多纤毛细胞摇篮体发生与亲本中心粒的关系
国际学术期刊EMBO Reports在线发表了中国科学院生物化学与细胞生物学研究所朱学良研究组的最新研究成果“Parental centrioles are dispensable for deuterosome formation and function during basal body
新湍流输运模型展示加热等离子体多尺度波动
由通用原子公司运行的美国能源部科学办公室所属用户设施——DIII-D国家聚变装置的研究人员,利用物理性能降低的等离子体湍流流体模型解释了托卡马克试验中意想不到的密度轮廓性质。为等离子湍流行为建模,或能帮助科学家优化诸如国际热核实验反应堆(ITER)等未来核聚变反应堆中的托卡马克性能。图片来源于网
小孩先心病的遗传学
先天性心脏病,只是指在胎儿发育期,由于发育得不是非常理想,导致了先天性的心脏病, 先天性的心脏病,其实遗传的机率不是很高。出现先天性心脏病的原因,主要可能与孕妇高龄怀孕、服用一些不当的药物或是受过什么惊吓、生活不安定、休息不佳等等因素有关,而患者的子代则很少有先天性心脏病的可能。 先天性心脏
体细胞遗传学的简史
1907年,美国学者R·G·哈里森第一次把神经细胞在体外培养成活。1956年,美国学者T·T·帕克使单个哺乳动物体细胞在体外培养的条件下分裂增殖成功,首次提供了用微生物学方法在严格控制的条件下进行体细胞遗传学研究的材料,简化了体外获得高等动物体细胞克隆的程序,把体细胞遗传学的研究推进到一个新的阶
体细胞遗传学的应用
应用细胞融合、染色体鉴定、生化鉴定、免疫学鉴定等技术,已经建立了许多种基因定位方法,使人的基因定位的研究取得了快速的进展。例如,可利用中国仓鼠的细胞和人的体细胞融合的杂种细胞在传代培养过程中不断排斥人的染色体的现象来进行基因定位:如发现杂种细胞中人的9号染色体被排斥后便失去ABO血型抗原,就可以
睡眠猝死的遗传学机制
Brugada综合症为常染色体显性遗传性疾病。研究认为编码钠电流、瞬时外向钾电流(Ito)、ATP依赖的钾电流、钙-钠交换电流等离子通道的基因突变都可能是Brugada综合症的分子生物学基础。 1998年Chen等最早证实了编码心脏钠通道基因(SCN5A)的alpha;亚单位突变是Brugad
光遗传学技术的原理
光遗传学(optogenetics)又称光刺激基因工程(optical stimulation plus genetic engineering),是一种通过光学和遗传学技术在活体动物脑内精准控制细胞行为的技术。由于其高度的时空特异性,光遗传技术广泛应用于神经科学研究领域。2010年,光遗传学技术荣
细胞遗传学的基本简介
细胞遗传学(英语:Cytogenetics)是遗传学下的一个分支,主要研究的是染色体与细胞表现之间的关系(尤其是在有丝分裂和减数分裂期间)。与之相关的技术包括核型、G显带染色体分析、其他遗传显带技术,以及诸如荧光原位杂交(FISH)和比较基因组杂交(CGH)等分子遗传学技术。
体细胞遗传学的介绍
体细胞遗传学(somatic cell genetics)是以体外培养的高等动植物和人的体细胞为主要研究对象的遗传学分支学科,体细胞遗传学以高等生物的体细胞为实验材料,采用细胞离体培养、细胞融合和遗传物质在细胞间转移等方法,研究真核细胞的基因结构功能及其表达规律等,克隆技术的发展和成就,使人们期
体细胞遗传学的研究
高等生物的遗传学研究一般都通过分析遗传性状在有性生殖子代中的分布和出现频率来进行。可是高等生物的生殖周期长,子代个体数目少,对于人类来讲则又不能在严格的实验条件下进行杂交实验,所以给研究带来了一定的困难。但是作为高等生物个体生命活动的基本单位的每一体细胞一般都包含着全套基因组,因此将体细胞在离体
细胞遗传学的发展历史
细胞遗传学,同时也是在细胞层次上进行遗传学研究的遗传学分支学科 行为和传递等机制及其生物学效应。 遗传学和细胞学结合建立了细胞遗传学,主要是从细胞学的角度, 特别是从染色体的结构和功能, 以及染色体和其他细胞器的关系来研究遗传现象, 阐明遗传和变异的机制。 细胞遗传学是遗传学与细胞学相结合的
遗传学中chr的意思
染色体的英文缩写