紫外吸收光谱有何特征

紫外吸收光谱主要是反应了π电子,特别是共轭体系的π电子的跃迁,也有n电子(非键轨道)的跃迁,一般紫外分光计是200nm以上,所观察到的是π到π*,n到π*的跃迁,一些常见物质的最大吸收波长可以通过查表得到......阅读全文

紫外吸收法测定核酸的含量

一、目的学习紫外分光光度法测定核酸含量的原理和操作方法,熟悉紫外分光光度计的基本原理和使用方法。二、原理核酸、核苷酸及其衍生物的分子结构中的嘌呤、嘧啶碱基具有共轭双健系统(-C=C一C=C-),能够强烈吸收250-280nm 波长的紫外光。核酸(DNA,RNA)的zui大紫外吸收值在260nm 处。

紫外—可见吸收光谱的产生

4.1.1.1 分子光谱和电子光谱紫外—可见分光光度法是利用某些物质的分子对波长范围在200~800nm的电磁波的吸收作用来进行分析测定的一种方法。分子的紫外—可见吸收光谱是由价电子能级的跃迁而产生的。分子,甚至是最简单的双原子分子的光谱,也要比原子光谱复杂得多。这是由于在分子中,除了电子相对于原子

紫外可见吸收光谱的性质

1. 同一浓度的待测溶液对不同波长的光有不同的吸光度;2. 对于同一待测溶液,浓度愈大,吸光度也愈大;3. 对于同一物质,不论浓度大小如何,很大吸收峰所对应的波长(很大吸收波长 λmax) 相同,并且曲线的形状也完全相同。

紫外—可见吸收光谱的产生

4.1.1.1 分子光谱和电子光谱紫外—可见分光光度法是利用某些物质的分子对波长范围在200~800nm的电磁波的吸收作用来进行分析测定的一种方法。分子的紫外—可见吸收光谱是由价电子能级的跃迁而产生的。分子,甚至是最简单的双原子分子的光谱,也要比原子光谱复杂得多。这是由于在分子中,除了电子相对于原子

紫外吸收光谱的产生原理

吸光物质分子吸收特定能量(波长)的电磁波(紫外光)产生分子的电子能级跃迁。电子跃迁类型1. 分子轨道有机分子中常见的分子轨道:σ轨道、π轨道和非键轨道 (未共用电子对n)分子轨道图如图22. 电子跃迁(transition)类型(1)σ~σ*跃迁:能级跃迁图由饱和键产生,能级差大,吸收光波波长短,吸

紫外可见吸收光谱的特征

1. 吸收峰的形状及所在位置——定性、定结构的依据2. 吸收峰的强度——定量的依据A = lg(1/T)=κCLT:透射率k:摩尔吸收系数,单位:L·cm⁻¹·mol⁻¹C:浓度L:光程长紫外可见光谱的两个重要特征波峰:λmax, κ例:λmaxEt = 279 nm (κ=5012,logk=3.

液相色谱紫外检测时,请问哪些基团紫外吸收强

一般来说,共轭越大,吸收越强些。但是别忘记了,不同的物质都在不同的波长下有最大吸收,和波长有非常大的关系,有的还有几个最大吸收波长的。所以这些很难进行比较。而且一些无机物也是出峰的,比如而碘、碘化钾、硝酸钠等。这些物质的紫外吸收也非常强。当然对于共轭较少一些的物质还是可以通过 共轭情况进行判断。比如

红外吸收光谱与紫外可见吸收光谱的区别

紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚

紫外吸收光谱和红外吸收光谱的异同点

紫外吸收光谱:电子能级间的跃迁红外吸收光谱:振动能级间的跃迁

红外吸收光谱与紫外可见吸收光谱的区别

一、两者的原理不同:1、紫外分光光度计的原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的

红外吸收光谱与紫外可见吸收光谱的区别

一、两者的原理不同:1、紫外分光光度计的原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的

紫外吸收光谱和红外吸收光谱的异同点

紫外吸收光谱:电子能级间的跃迁红外吸收光谱:振动能级间的跃迁

红外吸收光谱与紫外可见吸收光谱的区别

一、两者的原理不同:1、紫外分光光度计的原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的

紫外吸收检测器-ultraviolet-absorption-detector

紫外吸收检测器 ultraviolet absorption detector 简称紫外检测器(UV),是基于溶质分子吸收紫外光的原理设计的检测器。因为大部分常见有机物质和部分无机物质都具有紫外吸收性质,所以该检测器是液相色谱中应用最广泛的检测器,几乎所有液相色谱仪都配置了这种检测器。它不仅有较

紫外吸收检测器的特点介绍

紫外吸收检测器常用氘灯作光源,氘灯则发射出紫外-可见区范围的连续波长,并安装一个光栅型单色器,其波长选择范围宽(190nm~800nm)。它有两个流通池,一个作参比,一个作测量用,光源发出的紫外光照射到流通池上,若两流通池都通过纯的均匀溶剂,则它们在紫外波长下几乎无吸收,光电管上接受到的辐射强度相等

紫外可见吸收光度计工作原理

一、紫外可见吸收光谱的产生紫外可见吸收光度计是基于紫外可见吸收光谱而进行分析的,因此,有必要首先了解紫外可见吸收光谱的产生。紫外可见吸收光谱是由分子的外层价电子跃迁产生的,属分子吸收光谱,也称电子光谱。它与原子光谱的窄吸收带不同。由于每种电子能级的跃迁会伴随若干振动和转动能级的跃迁,使分子光谱呈现比

紫外可见吸收光谱的产生原因

紫外-可见吸收光谱的产生及基本原理2.1物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发态

关于紫外吸收检测器的简介

  ultraviolet absorption detector简称紫外检测器(UV),是基于溶质分子吸收紫外光的原理设计的检测器。  因为大部分常见有机物质和部分无机物质都具有紫外吸收性质,所以该检测器是液相色谱中应用最广泛的检测器,几乎所有液相色谱仪都配置了这种检测器。它不仅有较好的选择性和较

紫外可见吸收光谱的形成原理

原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种

紫外可见吸收光谱的产生原因

紫外-可见吸收光谱的产生及基本原理2.1物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发态

如何用紫外吸收法测定DNA含量

首先,分光光度计测量的样品必须是均一的,摇匀后再测量结果会准确些。它是利用分光光度法对物质进行定量定性分析的仪器。核酸的定量是分光光度计使用频率最高的功能。可以定量溶于缓冲液的寡核苷酸,单链、双链DNA,以及RNA。核酸的最高吸收峰的吸收波长260 nm。每种核酸的分子构成不一,因此其换算系数不同。

紫外吸收光谱法鉴别布洛芬

1.绘制紫外吸收光谱称取25mg布洛芬片剂溶于100ml 0.4%的氢氧化钠溶液中,其浓度为0.25mg/ml,振摇,使溶解,放置20min后,在紫外-可见分光光度计上,以0.4%氢氧化钠溶液为参比溶液,用1cm吸收池,从220nm开始,每次增加5nm,依次测定其吸光度,测定至300nm。利用上述在

紫外吸收法测定蛋白质含量

(一)原 理蛋白质分子中含有酪氨酸、色氨酸及苯丙氨酸等残基,它们的结构中具有共轭双键,对紫外光有吸收作用,其最大值在280nm波长处。在此波长附近,蛋白质溶液的光吸收值与其含量(范围是0.1~1.0mg/ml)成正比,因此,280nm的吸光度可用作蛋白质的定量测定。若将已知不同浓度的蛋白质标准溶液在

紫外可见吸收光谱的形成原理

原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种

紫外可见吸收光谱的产生原因

紫外-可见吸收光谱的产生及基本原理2.1 物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发

如何使用origin做紫外吸收光谱

只要有数据,origin作图很简单的。首先将你的波长数据复制到X值列(一般默认第一列),然后对应的吸收值数据复制到Y值列(一般默认第二列),然后选中两列数据。选择菜单栏中的Plot——line——line即可。

紫外可见吸收光谱的形成原理

原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种

紫外可见吸收光谱的形成原理

原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种

紫外/可见吸收光谱测量特点

主要特点:1.高性价比 广泛应用于无机化学、生物化学、药品分析、食品检验、环境保护、生命科学等领域。2.低杂散光、高稳定性 革命性优化设计的光学平台,带有两个光阑和多个光陷阱,实现了0.04%的超低杂散光。新型的光学平台在改善杂散光的同时,机械刚性也大大提高,使得光谱仪受微弯曲和温度漂移的影响降低了

紫外吸收法测定核酸浓度与纯度

实验概要学习测定DNA或RNA的浓度与纯度。实验原理核酸分子中的碱基集团含有共轭双键,它们对紫外光有强烈的吸收。核酸的最大吸收波长在260 nm,吸收低峰在230 nm。可以利用核酸的这一特性对其浓度进行测定。在波长260 nm下,A260=1时,双链DNA的含量为50 µg/ml,单链DN