紫外可见吸收光谱原理

紫外可见吸收光谱原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种跃迁类型所需要的能量依下列次序减小: σ→σ*>n→σ*>π→π*>n→π*由于一般紫外可见分光光度计只能提供190~850nm范围的单色光,因此,我们只能测量n→σ*的跃迁,n→π*跃迁和部分π→π*跃迁的吸收,而对只能产生200nm以下吸收的σ→σ*的跃迁则无法测量。扩展资料:在数值上等于1mol/L的吸光物质在1cm光程中的吸光度,ε= A/CL,与入射光波长、溶液的性质及温度有关。(1)吸光物质在特定波长和溶剂中的一个特征常数,定性的主要依据。(2)值愈大,方法的灵敏度愈高。物质的紫外吸收光谱......阅读全文

紫外可见吸收光谱的形成原理

原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种

紫外—可见—红外光谱分区表

紫外—可见—红外光谱分区表 几种波长单位的关系为:1μm = 1 micron = 10-4 cm-1 = 10000Å1 nm = 10-7 cm =10-3μm1 Å =  10-8 cm =10-9m名称波长(μm)波长(nm)波数(cm-1)远红外(转动区)25~100025000~1000

紫外可见光谱产生的原因

分析化学中(紫外-可见分光光度法),B带从benzenoid(苯的)得名。是芳香族(包括杂芳香族)化合物的特征吸收带。苯蒸汽在230~270nm处出现精细结构的吸收光谱,又称苯的多重吸收带。因在蒸汽状态中,分子间彼此作用小,反映出孤立分子振动、转动能级跃迁,在苯溶液中,因分子间作用加大,转动消失仅出

紫外可见光谱的峰面积

峰面积的积分基本没意义.只有峰有意义.UA本身就不是很精确的机子.其中A与C成正比

紫外可见漫反射光谱是什么

随光谱技术的迅速发展,光学测量在表面表征中已占有非常重要的位置。由测量染料、颜料而发展起来的漫反射紫外可见光谱(DRUVS)是检测非单晶材料的一种有效方法。在催化剂结构研究中,DRUVS已用于研究过渡金属离子及其化合物结构、活性组分与载体间的相互作用。本文就二氧化碳加氢甲烷化催化刑(分别担载Fe、C

紫外可见甲苯正己烷溶液标准品

甲苯正己烷溶液标准品 描述 简单检查您分光光度计的分辨率和带宽就可以保证您的分析可以获得最佳结果。0.02 % 甲苯正己烷溶液标准品是药典首选的用以验证分光光度计分辨率的方法。被热封到石英比色皿中,NIST™ 可溯源通过计算甲苯在 269 nm

紫外可见吸收光谱的产生原因

紫外-可见吸收光谱的产生及基本原理2.1物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发态

紫外可见吸收光度计工作原理

一、紫外可见吸收光谱的产生紫外可见吸收光度计是基于紫外可见吸收光谱而进行分析的,因此,有必要首先了解紫外可见吸收光谱的产生。紫外可见吸收光谱是由分子的外层价电子跃迁产生的,属分子吸收光谱,也称电子光谱。它与原子光谱的窄吸收带不同。由于每种电子能级的跃迁会伴随若干振动和转动能级的跃迁,使分子光谱呈现比

紫外可见吸收光谱的产生原因

紫外-可见吸收光谱的产生及基本原理2.1 物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发

紫外可见漫反射光谱是什么

随光谱技术的迅速发展,光学测量在表面表征中已占有非常重要的位置。由测量染料、颜料而发展起来的漫反射紫外可见光谱(DRUVS)是检测非单晶材料的一种有效方法。在催化剂结构研究中,DRUVS已用于研究过渡金属离子及其化合物结构、活性组分与载体间的相互作用。本文就二氧化碳加氢甲烷化催化刑(分别担载Fe、C

紫外可见光区的波长范围

紫外可见光区的波长范围介绍如下:紫外可见分光光度法合适的检测波长范围是200~800nm。紫外可见光分光光度计工作原理与红外光谱、拉曼光谱的工作原理近似,采用一定频率的紫外可见光照射所需检测的物质,引起物质中电子跃迁,从而表现出随着吸收波长变化而引起的光谱变化,记录光谱变化形成分析数据。紫外可见光分

紫外可见光谱怎么看

  紫外-可见吸收光谱(Ultraviolet Visible Absorption Spectroscopy),简称紫外光谱(属分子光谱),是物质的分子吸收紫外光-可见光区的电磁波时,电子发生跃迁所产生的吸收光谱。通常我们所说的紫外光谱其波长范围主要是为200~800nm(其中10~200nm为真

紫外可见与可见光分光光度计的区别

紫外可见分光光度计与可见分光光度计的区别是测定波长范围不同,紫外一般用氢灯,测定波长范围180~350nm,可见一般用钨灯,测定波长范围320~1000nm。所谓紫外可见分光光度计也就是说这个仪器可以更换光源,能够测定吸收峰在紫外和可见光部分的化合物。发现吸光度超过2,便不再显示,是正常现象。吸光度

Vis7220N紫外可见技术指标

主要技术指标 •波长范围:320〜1100nm •光源:进口插座式钨灯 •电源:AC 220V/50Hz  110V/60HZ •功率:100W •仪器尺寸:530mmx410mmx210mm •主机重量:15kg

紫外可见分光光度计

紫外可见分光光度计是一类很重要的分析仪器,无论在物理学、化学、生物学、医学、材料学、环境科学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理部门,紫外可见分光光度计都有广泛而重要的应用。分光光度计是杜包斯克(Duboscq)和奈斯勒(Nessler)等人在1854年将朗伯-比尔(La

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.

紫外可见分光光度计

紫外可见分光光度计  作用:化学指标测定 波长要求:190~1100nm          品牌:上海光谱 推荐型号:SP-756P

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外可见吸收光谱产品原理及应用

紫外可见吸收光谱产品原理 分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收

紫外可见吸收光谱法的特点

1、紫外可见吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。2、由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。3、紫外

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外可见吸收光谱产品原理及应用

紫外可见吸收光谱产品原理分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外可见分子吸收光度法原理

紫外—可见分光光度法是利用某些物质分子能够吸收200 ~ 800 nm光谱区的辐射来进行分析测定的方法。这种分子吸收光谱源于价电子或分子轨道上电子的电子能级间跃迁,广泛用于无机和有机物质的定量测定,辅助定性分析(如配合IR)。在分子中,除了电子相对于原子核的运动外,还有核间相对位移引起的振动和转动。

波谱分析之紫外可见光谱

  四谱  四谱是现代波谱分析中最主要也是最重要的四种基本分析方法。四谱的发展直接决定了现代波谱的发展。在经历了漫长的发展之后四谱的发展以及应用已渐成熟,也使波谱分析在化学分析中有了举足轻重的地位。   紫外-可见光谱  20世纪30年代,光电效应应用于光强度的控制产生第一台分光光度计并由于单色器材

紫外可见吸收光谱蓝移有什么好处

Blue shift or hypsochromic shift (蓝移) 机化合物向结构发变化使其吸收带吸收峰波向短波移现象称「蓝移」蓝移现象亦源于取代基或溶剂影响 Red shift or bathochromic shift (红移) 机化合物结构发变化使其吸收带吸收峰波向波向移现象称「红移」

紫外可见吸收光谱法的应用

利用紫外光谱可以推导有机化合物的分子骨架中是否含有共轭结构体系,如C=C-C=C、C=C-C=O、苯环等。利用紫外光谱鉴定有机化合物远不如利用红外光谱有效,因为很多化合物在紫外没有吸收或者只有微弱的吸收,并且紫外光谱一般比较简单,特征性不强。利用紫外光谱可以用来检验一些具有大的共轭体系或发色官能团的

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外—可见吸收光谱分析方法

4.3.1.1 定性分析无机元素的定性分析应用紫外—可见分光光度法比较少,主要采用原子发射光谱法或化学分析法。在有机化合物的定性分析鉴定及结构分析方面,由于紫外-可见吸收光谱较为简单,光谱信息少,特征性不强,并且不少简单官能团在近紫外光区及可见光区没有吸收或吸收很弱,在应用时也有较大的局限性。但是,