钠离子电池:电池体系新延伸蓄势待发向未来

钠离子电池是锂电池的有效补充。全球新能源汽车及储能行业正在快速持续增长,而作为核心原材料的锂资源正因为供需错配以及经济性问题成为影响行业发展的重要因素。而钠资源储量丰富,分布均匀,以其为原材料生产的钠电池工作原理与生产工艺方面基本一致,且相比锂电池,其优势在于低温性能、倍率性能及经济性更优,劣势在于循环寿命及能量密度,因此钠电池未来将在储能、商用车以及部分乘用车领域成为锂电池的有效补充。 相较锂电池,钠离子电池正极材料、负极材料、集流体具有明显变化。区别于锂电池当下正极采用三元材料/磷酸铁锂材料/钴酸锂材料,负极采用石墨材料的情况,钠电池正极材料可以分为层状氧化物/聚阴离子氧化物/普鲁士蓝化合物等体系,负极主要采用硬碳材料;集流体方面,钠电池在正负极方面均采用铝箔。在电解液方面,钠电池将采用六氟磷酸钠作为溶质。 钠电池行业快速推进产业化。伴随中科海钠先后合作规划5GWh全球首条钠离子电池量产线,1GWh钠离子电池PACK产能......阅读全文

动力锂电池行业竞争趋势分析-龙头企业终将脱颖而出

动力电池作为技术密集型和资本密集型产业,随着终端用户对其性能要求的提升,拥有更强大技术实力的龙头企业终将脱颖而出。从中国的市场角度来看,2016年全年,比亚迪的出货量排名第一,达到7.35GWh。排名其后的企业分别为宁德时代、沃特玛、国轩高科等,前10名企业合计市场占有率达79%。2017年,宁德时

锂电池正极材料磷酸盐在食品行业的应用

  磷是人体所必需的重要的矿物质元素,人体摄入磷的主要来源为天然食物或食品磷酸盐添加剂,磷酸盐是几乎所有食物的天然成分之一。由于磷酸盐能改善或赋予食品一系列优异性能,因此早在一百多年前就开始应用于食品加工中,而大量使用则在二十世纪七十年以后。磷酸盐是应用最广泛、用量较大的食品添加剂门类之一,作为重要

锂电池设备行业高效率、一体化趋势增强

  随着各工艺环节设备的效率提升,同样单体设备的产能增加,导致每GWh设备价值量不断下降。以涂布机为例,2018年高速双层涂布机渗透率快速提升,涂布速度从原先的50-60m/min大幅提升至120m/min,150m/min涂布机产品也正在研发中。一体化方面,通过将几个相邻工序的锂电设备集成可以提升

mRNA疫苗行业分析报告

2020年,突如其来的新冠疫情席卷全球。新冠病毒传播速度快,感染面积大,毒株易变异等特点,导致疫情防控难度升级。为建立疫情防护屏障,人们需要在短时间内研发生产相应疫苗,并且快速、大规模生产和接种。传统疫苗受制于研发周期长、成本高、生产难度大等原因无法快速高效地应对新冠快速传播和病毒变异迅速的特点。如

基因检测行业分析报告

  相关概念  基因是DNA分子上的一个功能片段,是遗传信息的基本单位,是决定一切生物物种最基本的因子;基因决定人的生老病死,是健康、靓丽、长寿之因,是生命的操纵者和调控者。因此,哪里有生命,哪里就有基因,一切生命的存在与衰亡的形式都是由基因决定的,包括您的长相、身高、体重、肤色、性格等均与基因密不

锂电池的电池开路电压特性

锂离子电池开路电压与电池SOC的关系曲线如图5所示。从图中可以看出,电池的ocv-soc曲线与电池的放电电压曲线具有相同的趋势。在SOC的中间区间(20%

钒电池与锂电池哪个好?

1、安全性:钒电池之所以一时之间声名鹊起,核心就在于安全性。2011年至2022年4月全球共计发生34起储能电站爆炸事件,其中32起均为锂电池,铅酸电池、钠硫电池个1起;2、循环寿命:锂电池循环寿命短,储能用磷酸铁锂循环次数最高约6000次,但钒电池寿命很长,循环次数可达1-2万次;3、能量密度:钒

关于锂电池的电池产量介绍

  中国是世界最大的锂电池生产制造基地、第二大锂电池生产国和出口国,锂电池已经占到全球40%的市场份额。2011年,我国锂电池产量达到29.66亿只,同比增长10.88%,国内锂电池出口额为43.83万美元,实现贸易逆差33500.77万美元,详见《前瞻中国锂电池行业市场需求预测与投资战略规划分析报

锂电池的电池内阻特性

磷酸亚铁锂离子电池的欧姆电阻曲线呈现以下特点:在广泛的SOC包围在图6中,SOC=100%(10%)范围内,电池的欧姆电阻变化很小,而在SOC间隔越低,与SOC欧姆电阻是实质性的减少,这是因为电池放电的电池内部化学活性;在整个SOC范围内,充电欧姆的内阻一般大于放电欧姆内阻。这是因为锂离子电池的放电

锂电池的电池开路电压特性

锂离子电池开路电压与电池SOC的关系曲线如图5所示。从图中可以看出,电池的ocv-soc曲线与电池的放电电压曲线具有相同的趋势。在SOC的中间区间(20%

全面比较锂电池和铅酸电池

锂电池和铅酸电池在储能领域都有着举足轻重的地位,谁也无法完全替代谁,不过两者电池的侧重点显然不一样,铅酸电池更倾向于电动自行车、摩托车等,而锂电池在汽车上更为常见。那么锂电池和铅酸电池哪个好?从以下几个方面比较锂电池和铅酸电池的优缺点。1、重量能量密度目前的锂电池能量密度一般在200~260wh/g

关于锂电池的电池寿命解释

  电池的寿命分为循环寿命和日历寿命两个参数。循环寿命指的是电池可以循环充放电的次数。即在理想的温湿度下,以额定的充放电电流进行充放电,计算电池容量衰减到80%时所经历的循环次数。  日历寿命是指电池在使用环境条件下,经过特定的使用工况,达到寿命终止条件(容量衰减到80%)的时间跨度。日历寿命与具体

钒电池能取代锂电池吗?

钒电池在储能领域有望部分取代锂电池,钒电池安全性能突破,易于扩容,而锂电池扩容风险更大。钒电池充放电对容量损耗极低,全生命周期性价比突出,适用于储能领域,特别是光伏、风电等新能源领域的大规模储能。不过在储能领域,钒电池也存在一个强劲的对手,那就是钠离子电池,且目前钠离子电池的商业化应用更快。

锂电池和铅酸电池使用周期

      目前较为流行的材料体系是三元和铁锂,三元动力型锂电池循环次数通常在1000次以上,磷酸铁锂电池的循环次数在2000次以上,铅酸电池的循环次数通常只有300~350次左右,所以锂电池的使用寿命是铅酸电池的3-6倍左右。

关于锂电池的电池结构介绍

  锂电池通常有两种外型:圆柱型和方型。电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由钴酸锂(或镍钴锰酸锂、锰酸锂、磷酸亚铁锂等)及铝箔组成的电流收集极。负极由石墨化碳材料和铜箔组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀

我国锂电池单体电池均一性等差-锂电池材料低端过剩

  “目前我们已经形成了完善的锂电池体系,掌握了动力电池的结构特点、制造工艺、生产技术等,但单体电池产品均一性、稳定性、一致性及安全性等方面与国外相比还有比较大的差距。”在10月17日于浙江省湖州市举办的第九届国际电动车新型锂电池会议上,国家科技部高技术发展中心副主任卞曙光介绍了中国新能源汽车动力电

如何区分汽车电池是三元锂电池还是磷酸铁锂电池?

新能源汽车三种常用的电池分别是三元锂电池、磷酸铁锂电池、以及镍氢电池,而目前比较常见并且大众认可度较高的就是三元锂电池和磷酸铁锂电池了。那么,如何区分新能源汽车电池是三元锂电池还是磷酸铁锂电池呢?下面简单介绍下方法。对于普通消费者而言,想要区分电池是三元锂还是磷酸铁锂,最简单的方法就是查看车辆配置表

锂电池的定义

锂电池(Lithium battery)是指电化学体系中含有锂(包括金属锂、锂合金和锂离子、锂聚合物)的电池。

锂电池的介绍

  锂电池是以锂金属或锂合金为阳极材料,使用非水电解质溶液的电池。  锂电池与锂离子电池不一样的是,前者是一次电池,后者是充电电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高[1],所以锂电池长期没有得到应用。随着二十世纪末微电子技术的发展,小型化的设备日益增多,对

锂电池的组成

  电池材料  碳负极材料:  已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。  锡基负极材料:  锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。没有商业化产品。  氮化物  也没有商业化产

锂电池的结构

  锂电池通常有两种外型:圆柱型和方型。电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由钴酸锂(或镍钴锰酸锂、锰酸锂、磷酸亚铁锂等)及铝箔组成的电流收集极。负极由石墨化碳材料和铜箔组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀

锂电池怎么组装

1、制浆:用专门的溶剂和粘结剂分别与粉末状的正负极活性物质混合,经搅拌均匀后,制成浆状的正负极物质。2、涂膜:通过自动涂布机将正负极浆料分别均匀地涂覆在金属箔表面,经自动烘干后自动剪切制成正负极极片。3、装配:按正极片—隔膜—负极片—隔膜自上而下的顺序经卷绕注入电解液、封口、正负极耳焊接等工艺过程,

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电

​什么是钠基电池?

钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。这种新型电池里的钠与一种叫做肌醇的化合物结合在一起,这是一种在家用产品中常见的有机化合物,包括婴儿配方奶粉。正如钠的含量比锂要丰富得多,米糠醇很容易从米糠中提炼出来,也可以在玉米加工过程中产生的副

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电

什么是钠基电池?

钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。这种新型电池里的钠与一种叫做肌醇的化合物结合在一起,这是一种在家用产品中常见的有机化合物,包括婴儿配方奶粉。正如钠的含量比锂要丰富得多,米糠醇很容易从米糠中提炼出来,也可以在玉米加工过程中产生的副

什么是钠基电池?

钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。这种新型电池里的钠与一种叫做肌醇的化合物结合在一起,这是一种在家用产品中常见的有机化合物,包括婴儿配方奶粉。正如钠的含量比锂要丰富得多,米糠醇很容易从米糠中提炼出来,也可以在玉米加工过程中产生的副

什么是钠基电池?

  钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显著改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质

18650锂电池与26650锂电池的结构和应用对比

18650电池18650电池是一种直径为18mm、高度为65mm的锂离子电池,它最大的特点是拥有非常高的能量密度,几乎达到170瓦时/千克,因此这种电池是性价比较好的电池,我们平时经常看见的多数是这种电池,因为它是比较成熟的锂离子电池,各方面系统质量稳定性较好,广泛适用于10千瓦时左右的电池容量场合