Antpedia LOGO WIKI资讯

镁金属二次电池向大规模应用迈进

近日,记者从中国科学院青岛生物能源与过程研究所(以下简称青岛能源所)获悉,该研究所固态能源系统技术中心围绕镁电池中的关键科学问题开展了大量研究工作,在镁金属二次电池关键科学问题和核心材料方面取得系列成果,该系列成果近期发表在国际权威期刊《德国应化》《先进材料》和《先进能源材料》上。极具潜力的镁金属二次电池 镁金属二次电池并不是近些年才出现的概念。从以色列科学家多伦·奥尔巴赫(Doron Aurbach)在2000年首次提出镁金属二次电池模型至今,该电化学体系已发展二十余年。青岛能源所固态能源系统技术中心研究员崔光磊解释说,镁金属二次电池是指以金属镁为负极的可循环电池,组成镁金属二次电池的核心是镁负极、电解液及能嵌入镁的正极材料。 据介绍,金属镁具有极高的体积容量,是作为高体积能量密度电池负极的极佳选择。镁金属二次电池的工作原理与锂二次电池原理相同,但与锂二次电池相比更安全,其原因在于镁及多数镁化合物都是无毒或低毒的,且镁......阅读全文

电解质血清镁检测

血清镁介绍: 镁是体内含量最多的阳离子之一。成人体内含镁0.823-1.234mol,其中50%存在于骨骼,45%在细胞内液,细胞外液占5%。肝、肾和肌肉含镁较多,在细胞内液镁的含量仅次于钾而居第二位,其浓度约为细胞外液的10倍。在细胞外液,镁的含量仅次于钠、钾、钙而居第四位。在许多生理化学过程中镁

镁金属二次电池向大规模应用迈进

近日,记者从中国科学院青岛生物能源与过程研究所(以下简称青岛能源所)获悉,该研究所固态能源系统技术中心围绕镁电池中的关键科学问题开展了大量研究工作,在镁金属二次电池关键科学问题和核心材料方面取得系列成果,该系列成果近期发表在国际权威期刊《德国应化》《先进材料》和《先进能源材料》上。极具潜力的镁金属二

镁金属二次电池关键科学问题和核心材料获进展

原文地址:http://news.sciencenet.cn/htmlnews/2022/7/482564.shtm    镁金属溶出行为以及反应界面处含氯物种浓度与施加电流之间的关系示意图    能源所供图  Cu2-xSe的储镁工作机理示意图   能源所供图 单

非对称凝胶电解质助力无枝晶金属锂电池研究获进展

  具有高理论比容量、低氧化还原电位的金属锂负极,有望助力下一代高能量电池的实现。然而,液态电解液体系中金属锂负极的枝晶问题饱受诟病。枝晶生长不但能够导致锂的不可逆容量损失,还可能引发电池短路乃至爆炸。科学家们对枝晶生长机理进行了广泛研究,其中得到广泛认可的Chazalviel模型指出,枝晶成核时间

韩国研发出新型镁离子电池元件

   韩国研究财团发布消息称,韩国忠南大学成功开发出新型镁-锡(Mg2Sn)合金阴极元件,该元件具有高容量的充放电性能,有望在下一代脱锂二次电池领域广泛应用。该研究成果发表在国际学术杂志《电源杂志》(Journal of Power Sources)上。   目前使用的锂离子电池价格昂贵,使用寿命短

新型固态电解质有望造就完美电池

  美国麻省理工学院和韩国三星公司的研究人员在电解质材料研究方面取得突破。他们找到一种新型固态电解质材料,能一次性解决传统锂离子电池在容量、体积、寿命和安全上所面临的多种问题,有望造就出一种性能优异且更为安全持久的电池。  打开当今无处不在的智能设备——无论是手机、笔记本电脑还是电动汽车,你会发现电

新型有机硼酸镁基电解液 有效提升镁电池循环、倍率性能

  依托中科院青岛能源所建设的青岛储能产业技术研究院(以下简称青岛储能院)通过一步原位合成的方式,得到了一款新型有机硼酸镁基电解液,有效地提升了镁/硫电池的循环性能和倍率性能,有望将低成本高能量密度的镁/硫电池体系推向实用化,相关研究结果已于近日发表在《能源和环境科学》(Energy& Enviro

单锂离子导电准固态聚合物刷电解质:无枝晶锂金属电池

  在过去的几十年,锂离子电池的能量密度已经达到250 Wh kg-1、但仍不能满足能源时代电动汽车、无人驾驶飞机、智能电网的快速扩张和前所未有的电能消耗需求,因此推动更高能量密度的储能装置发展势在必行。目前,由具有最高能量密度 (3860 mAh g-1) 和最低电化学电位 (-3.04 V vs

Science:液化的气态电解质提高电池性能!

  电容器和锂离子电池自商业化以来,为了提高器件性能,人们在电极材料领域进行了广泛而大量的研究攻关,而对于电解质这一重要领域,却进展缓慢!  水溶性电解质被沿用了一个多世纪,而在电解质替换为有机溶剂之后,能量密度才得到实质性的提升,因为有机溶剂可以保障电池在更高的电压下操作。偶然发现的碳酸乙二酯(常

付丞寅研究员《AEM》:聚合物电解质实现5 V固态锂金属电池

  在固态电池中,虽然聚合物电解质能够提供与活性材料良好的接触,聚合物电解质室温离子电导率低和电化学稳定窗口窄的问题使其无法与高电压正极材料和锂金属负极同时匹配并提供理想的室温电池性能。  近日,瑞士联邦材料科学与技术研究所的付丞寅研究员(第一、通讯作者)等人设计了一种基于离子液体聚合物的固态电解质