Antpedia LOGO WIKI资讯

关于全固态电池的界面问题介绍

全固态锂电池,一个重要的技术难点是电解质与电极之间形成高电阻界面问题。整个技术都还在发展过程中,对此问题暂时没有统一的观点,一般推测的全固态电池正负极与电解质之间的界面形成原因: 1)由于外加电压高于电解质能够承受的电压范围,使得电解质发生氧化或者还原,进而在正极或者负极表面上形成界面; 2)固体电解质的性质本身就与电极材料不相容,因而发生反应,生成物结成界面; 3)充放电过程中,离子的嵌入脱出过程的副产物,形成电极与固态电解质的界面。......阅读全文

界面张力常见问题

  表面张力:由于液相和气相的密度差异,液体的表面层中的分子,受到了一个指向液相内部并垂直于界面的引力,使得液体表面就如张紧的弹性薄膜,在这张薄膜上存在着收缩张力,使液体表面有收缩到最小的趋势。单位长度上的收缩张力称为表面张力。  1.表面张力的测试方法主要有哪些?  (1)挂环法(Du Nouy

新复合氢化物锂超离子导体问世

  据物理学家组织网25日报道,日本东北大学和高能加速器研究组织的科学家,开发出一种新的复合氢化物锂超离子导体。研究人员表示,通过设计氢簇(复合阴离子)结构实现的这一新材料,对锂金属显示出了极高的稳定性,使锂金属有望成为全固态电池的最终阳极材料,催生出迄今能量密度最高的全固态电池。  阳极为锂金属的

关于锂电池组装时要注意的问题介绍

  1、要组装的锂电池电芯选取的时候除了注重电池电芯品牌质量外,还要注意电芯之间的电压、内阻、容量、放电性能等方面的一致性误差越小越好。  2、不能新旧电池电芯混合使用,这样回让新电池电芯损坏过快,影响整个电池组的寿命;  3、不同性能间的锂电池芯不能混用,即高温电池不能与普通电池混用,低温电池不能

加热可去电阻?全固态电池应用不再是梦

  随着东京工业大学、钢铁技术协会(AIST)和山形大学的研究人员推出了一种恢复其低电阻的策略,全固态电池现在离成为下一代主力电池又近了一步。他们还探索了潜在的还原机制,为更好理解全固态锂电池的基础工作原理铺平了道路。  全固态锂电池已经成为材料科学与工程领域的新热潮,因为传统的锂离子电池已经不能满

全固态锂电池组成的薄膜正极简介

  大多数能够膜化的高电位材料均可用于固态化锂电薄膜正极材料。薄膜正极材料主要分为金属氧化物,金属硫化物和钒氧化物。  适合做正极材料的金属化合物,多数已经在传统锂电池领域得到了应用,比如Li Mn2O4、Li Co O2、Li Co1/3Ni1/3Mn1/3O2、Li Ni O2、Li Fe PO

关于污泥界面仪特性和优势的介绍

  菜单式操作,校正  微电脑控制  输出信号线性度好  探头电子线路采用表面封装技术  探头信号经过预处理,减少传送误差  多光束量测技术,可补偿感测棒光学镜片被污物或长着。  可自动或手动量测污泥液位及浓度分布。  具同步输入功能。卷筒可自动升起感测棒当刮泥机通时,可连接外加清洗装置清洗电极。

锂电池组装的电池点焊问题介绍

  1、电池组加工组装优先以机器加工为主,不推荐人工组装。(多串等电池动力包,单并的要求不高)  2、为何不推荐人工点焊?电池点焊力度控制不好,电池点穿漏液,镍片点不结实虚焊。人工烙铁焊接,焊锡温度过高会伤害极片,建议低温焊锡。(家用多数都是高温焊锡)  3、电芯连接线越粗越好。镍片越粗越好。  3

全固态薄膜锂电池的LPON等非晶体固态电解质介绍

  LiPON是一种部分氮化的磷酸锂,是一种综合性能优秀的固态电解质,LiPON膜的室温离子电导率与其N含量有关,其合成最佳比例的LiPON电解质膜为LibPOxNaus,25℃时其离子电导率可达3.3×10-5S/cm,电化学稳定窗口宽,可达5.5V,活化能0.54eV。LiPON是通过在N2气氛

关于锂电池组装的电芯处理问题介绍

  电池组组装必须要加匹配保护板!  电池要求匹配一致性,越一致越好越稳定。如果匹配不一致,会出现容量不够,严重导致电池保护板检测失效,电池组不工作。如何处理?  1、如果有条件,上机器筛选,没有机器就用内阻测试仪1个1个测,电压、内阻、容量一致的放一起,静置一段(7~15天),静置后,再测,如果仍

关于高分子锂离子电池的安全问题介绍

  所有的锂离子电池,无论是以前的,还是这些年的,包括聚合物锂离子电池、磷酸铁锂电池等等,都非常害怕电池内部短路、电池外部短路、过充这些情况。  因为,锂的化学性质非常活跃,很容易燃烧,当电池放电、充电时,电池内部会持续升温,活化过程中所产生的气体膨胀,电池内压加大,压力达到一定程度,如外壳有伤痕,

全固态锂电池组成无机有机复合固态电解质介绍

  无机有机复合固态电解质,是指在聚合物的固态电解质当中加入无机填料所形成的一类电解质。一定量活性无机填料的加入可以增加锂离子扩散通道,离子电导率明显提高。  全固体电解质的研究主要集中在开发高电导率无机电解质和有机-无机复合电解质。硫化物固体电解质具有较高的室温离子电导率,但是其环境稳定性差。氧化

全固态聚合物锂离子电池的传输机理

  对于聚合物电解质来说想要进行离子传输,首先必须含有一些极性基团,例如-O-,=O,-S-,-N-,-P-,C=O,C≡N等,这些基团能与Li+进行配位,进而溶解锂盐,产生自由移动的离子。目前大部分研究认为聚合物电解质中的离子传输只发生在玻璃化转变温度(Tg)以上的无定形区域,因此链段的运动能力也

我国研制出高比能、长寿命的固态钠电池 衰减率仅为0.007%

  近日,中国科学院大连化学物理研究所二维材料与能源器件研究组研究员吴忠帅团队与中国科学技术大学教授余彦团队、中科院宁波材料技术与工程研究所研究员姚霞银团队合作,构筑了聚合物固态电解质和正极材料的一体化集成系统,有效降低了固固界面阻抗,显著提高了电子、离子和电荷的传输效率,研制出高比能、柔性的全固态

关于锂电池的电池结构介绍

  锂电池通常有两种外型:圆柱型和方型。电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由钴酸锂(或镍钴锰酸锂、锰酸锂、磷酸亚铁锂等)及铝箔组成的电流收集极。负极由石墨化碳材料和铜箔组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀

关于锂电池的电池产量介绍

  中国是世界最大的锂电池生产制造基地、第二大锂电池生产国和出口国,锂电池已经占到全球40%的市场份额。2011年,我国锂电池产量达到29.66亿只,同比增长10.88%,国内锂电池出口额为43.83万美元,实现贸易逆差33500.77万美元,详见《前瞻中国锂电池行业市场需求预测与投资战略规划分析报

全固态锂离子电池的结构材料的独特优势

  ①完全消除了电解液腐蚀和泄露的安全隐患,热稳定性更高;  ②不必封装液体,支持串行叠加排列和双极结构,提高生产效率;  ③由于固体电解质的固态特性,可以叠加多个电极;  ④电化学稳定窗口宽(可达5V以上),可以匹配高电压电极材料;  ⑤固体电解质一般是单离子导体,几乎不存在副反应,使用寿命更长。

精准电镜观测揭示空间电荷层对全固态锂电池真实影响

中国科学技术大学教授马骋团队通过球差校正电镜的原子尺度观测,研究了空间电荷层对全固态锂电池中离子传输的影响,并发现这一现象的微观机理与过往几十年的认知截然不同。3月24日,相关研究成果发表于《自然-通讯》。相比目前的商业化锂离子电池,全固态锂电池具有更好的安全性和更大的能量密度提升空间。在这种电池中

固态电池的分类及性能介绍

固态电池目前有全固态电池和半固态电池两种形态。全固态电池:将隔膜、电解液替换成陶瓷基固态电解质(硫化物LiPSCl;氧化物LLZTO、LATP)。全固态电池彻底去除溶剂准固态(半固态)电池:全固态中的陶瓷基电解质与正负极(固-固界面)接触较差,准固态采用用聚合物基体PVDF、PEO等作固态电解质。但

研究人员开发出多体系硫化物固体电解质

  全固态(硫化物)电池作为推动社会和人类进步的一项前沿科技,被日本科学界列入能够与5G、人工智能齐头并进的研究行列。它凭借其高安全性、高能量密度、耐高温、长寿命等优点,开创性地解决了传统有机电解液电池存在的寿命短、易燃、易爆等一系列问题,成为造福人类的一项颠覆性的突破技术。在新能源汽车急需提升续航

我国开发,超强全固态锂电池电解质问世!

  日前从中国科学技术大学获悉,该校马骋教授开发了一种新型固态电解质,它的综合性能与目前最先进的硫化物、氯化物固态电解质相近,但成本不到后者的4%,适合进行产业化应用。6月27日,该成果发表在国际著名学术期刊《自然·通讯》上。研究人员介绍,氧氯化锆锂能以目前最低的成本实现和当下最先进的硫化物、氯化物

固态电池比传统锂离子电池的安全性分析对比

一般认为,全固态电池比传统的锂离子电池更安全。但事实真的是这样吗?来看看来自美国能源部的研究人员怎么说。近几年一系列电池火灾事件引发了人们关于锂离子电池安全性问题的讨论。其中一种可能的解决办法是用固态电池替代,它是利用不易燃的固态电解质代替易挥发和易燃的液态电解质。这种固态电解质的安全优势已得到广泛

宁波材料所等在全固态锂硫电池研究方面取得进展

  锂硫电池被认为是最有发展潜力的下一代高能量密度储能器件之一,其正极材料单质硫的理论比容量和比能量可高达1675 mAh/g和2567 Wh/kg,是目前商用锂过渡金属氧化物正极的五倍。然而,传统锂硫电池的安全性与循环性能差是其面临的主要挑战,严重影响了商业化进程。采用无机固体电解质取代传统有机电

美全新全固态锂硫电池 能量密度是传统锂电池4倍

  据物理学家组织网6月6日(北京时间)报道,美国能源部下属的橡树岭国家实验室(ORNL)的科学家设计出了一种全新的全固态锂硫电池,其能量密度约为目前电子设备中广泛使用的锂离子电池的4倍,且成本更低廉。相关研究发表在本周出版的世界顶尖化学期刊《德国应用化学国际版》上。

关于电池的历史发展介绍

  1780年的一天,意大利解剖学家伽伐尼(Luigi Galvani)在做青蛙解剖时,两手分别拿着不同的金属器械,无意中同时碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到电流的刺激,而如果只用一种金属器械去触动青蛙,就无此种反应。伽伐尼认为,出现这种现象是因为动物躯体内部产生的一种电,他

关于高能电池的分类介绍

  1、以镁作负极活性物质的镁干高能电池:其结构与锌-锰干电池基本相同。镁的标准电极电势比较低,电化学当量小,具备了作为高能电池负极活性物质的优良条件。例如镁-锰干电池的实际比能量是锌-锰干电池的4倍,工作时电压平稳,在低温下也具有较好的工作能力,并且能耐高温贮存。其缺点是有电压滞后现象(接通后需要

关于电池的分类方法介绍

  第一类:按电解液种类划分包括:碱性电池,电解质主要以氢氧化钾水溶液为主的电池,如:碱性锌锰电池(俗称碱锰电池或碱性电池)、镉镍电池、氢镍电池等;酸性电池,主要以硫酸水溶液为介质,如铅酸蓄电池;中性电池,以盐溶液为介质,如锌锰干电池(有的消费者也称之为酸性电池)、海水激活电池等;有机电解液电池,主

关于干电池的特点介绍

  1.体积小,一次性使用产品,可随意连接成所需用工作电压的直流稳压电源.  2.环保无污染,绿色健康产品,可是要注意干电池损毁后,应集中化回收利用正确处理,要不然会造成环境污染  3.安全使用范围广  用于强光手电筒、半导体材料录音机、三洋收录机、数码相机、电子时钟、儿童玩具等,并且也比较适用于国

关于刀片电池的优点介绍

  1.原材料标准体系看,概念能量密度能达到350瓦时每千克,所以说发展潜力巨大比磷酸铁锂更为重要。  2.容积能量密度改善比较突出。可以通过ZL,“刀片电池”技术应用PACK容积能量密度超过三百三十瓦每小时/L,较固有电池系统可改善三十%及以上。  3.成本费用大幅度降低三十%及以上。可以通过合理

关于锂电池充不进电的问题分析

  1.电池的电极触点脏污,接触电阻太大造成压降太大,充电时主机认为已经充满而停止充电;  2.内部充电电路出现故障,不能正常充电;  3.锂电池内部出现故障。

关于手机电池鼓包的问题分析

  1、电池产生严重的过充  过充,因为电池里面有一块小电路板,主要对电芯起保护作用,当过流过充都会自动断开,停止充电或放电的。一些厂家为了提高电池容量,电池极限电压设置稍高一些,这将导致电池过充,因为大多数的充电器不过充保护,完全依靠电池内部电路来保护,后果可以想象。  2、充电时充电电流过大