关于腺苷三磷酸酶(ATP酶)合成酶的介绍

ATP合成酶是一类线粒体与叶绿体中的合成酶,它广泛存在于线粒体、叶绿体、原核藻、异养菌和光合细菌中,是生物体能量代谢的关键酶。 ATP合成酶可以在跨膜质子动力势的推动下,利用ADP和Pi催化合成生物体的能量“通货”——ATP。一般来说,机体所需的大多数ATP都是由ATP合酶产生的。据估计,人体每天进行正常活动所需的ATP量约等于他的体重,如体重70千克的成年人,每天合成的用于机体正常生命活动的ATP量约为70kg。而如此巨量的ATP正是由人体无数的ATP合酶合成的。 同时,ATP合成酶也可以催化逆反应,即ATP的水解。因此,从某种意义上来说,ATP合成酶也是一类ATP酶。......阅读全文

ATP合成酶的结构组成

ATP合酶主要由F₁(伸在膜外的水溶性部分) 和Fo(嵌入膜内)组成。不同物种来源的 ATP合酶含的亚基和数目不尽相同。以牛心线粒体 ATP合酶为例,它的F₁含有仅α3、β3、γ、δ、ε共9 个亚基,Fo含a、b2、C10共13个亚基,F₁与Fo之间有OSCP柄相连接,还有抑制蛋白。线粒体F₁Fo-

三磷酸腺苷合成酶在细胞中的分布

在ATP酶的酶学模型中,验证其γ轴是否旋转占有重要地位,1997年,英国自然杂志(vol. 386, pp. 299–302)刊了日本科学家题为 "Direct observation of the rotation of F1-ATPase" 文章,报道了ATP合成酵素F1单元可以通过水解ATP造

三磷酸腺苷合成酶在细胞中的分布

  在ATP酶的酶学模型中,验证其γ轴是否旋转占有重要地位,1997年,英国自然杂志(vol. 386, pp. 299–302)刊了日本科学家题为 "Direct observation of the rotation of F1-ATPase" 文章,报道了ATP合成酵素F1单元可以通过水解AT

腺苷三磷酸酶的基本功能

跨膜ATP酶可以为细胞输入许多新陈代谢所需的物质并输出毒物、代谢废物以及其他可能阻碍细胞进程的物质。例如,钠钾ATP酶(又称为钠/钾离子ATP酶)能够调节细胞内钠/钾离子的浓度,从而保持细胞的静息电位;氢钾ATP酶(又称为氢/钾离子ATP酶或胃质子泵)可以使胃内保持酸化环境。除了作为离子交换器,跨膜

腺苷三磷酸酶的使用注意事项

(1)应注意观察有无过敏反应,凡过敏体质者不宜使用。(2)ATP在体内分解后,能使全身血管扩张,血压下降,因此它不宜应用于急性心肌梗塞。脑出血初期也应禁用ATP。ATP也不宜与能加重负性传导和频率作用的药物合用。(3)静注时宜缓慢,应从小剂量开始治疗,无效时可逐渐加量。

ATP合成酶的前景及展望

21世纪是纳米科技的世纪。高集成、智能化纳米器件的开发必将推动信息技术、生物技术、新材料技术、能源技术及环境技术等的高速发展。纳米技术是国际科技竞争的前沿,也是对未来社会发展、经济振兴、国力增强最有影响力的战略研究领域。人工纳米机器的构建与应用是此前沿领域国际上最具有挑战性的热点课题之一。21世纪也

ATP合成酶的基本信息

ATP合成酶,又称FoF₁-ATP酶在细胞内催化能源物质ATP的合成。在呼吸或光合作用过程中通过电子传递链释放的能量先转换为跨膜质子(H+)梯差,之后质子流顺质子梯差通过ATP合酶可以使ADP+Pi合成ATP。ATP合酶(ATP synthase)广泛分布于线粒体内膜,叶绿体类囊体,异养菌和光合菌的

ATP合成酶的前景及展望

21世纪是纳米科技的世纪。高集成、智能化纳米器件的开发必将推动信息技术、生物技术、新材料技术、能源技术及环境技术等的高速发展。纳米技术是国际科技竞争的前沿,也是对未来社会发展、经济振兴、国力增强最有影响力的战略研究领域。人工纳米机器的构建与应用是此前沿领域国际上最具有挑战性的热点课题之一。21世纪也

ATP合成酶的基本内容

  ATP合成酶是一类线粒体与叶绿体中的合成酶,它广泛存在于线粒体、叶绿体、原核藻、异养菌和光合细菌中,是生物体能量代谢的关键酶。  ATP合成酶可以在跨膜质子动力势的推动下,利用ADP和Pi催化合成生物体的能量“通货”——ATP。一般来说,机体所需的大多数ATP都是由ATP合酶产生的。据估计,人体

概述ATP合成酶的前景及展望

  21世纪是纳米科技的世纪。高集成、智能化纳米器件的开发必将推动信息技术、生物技术、新材料技术、能源技术及环境技术等的高速发展。纳米技术是国际科技竞争的前沿,也是对未来社会发展、经济振兴、国力增强最有影响力的战略研究领域。人工纳米机器的构建与应用是此前沿领域国际上最具有挑战性的热点课题之一。  2

ATP合成酶的功能和分布情况

ATP合成酶,又称FoF₁-ATP酶在细胞内催化能源物质ATP的合成。在呼吸或光合作用过程中通过电子传递链释放的能量先转换为跨膜质子(H+)梯差,之后质子流顺质子梯差通过ATP合酶可以使ADP+Pi合成ATP。ATP合酶(ATP synthase)广泛分布于线粒体内膜,叶绿体类囊体,异养菌和光合菌的

关于叶绿体ATP酶的介绍

  催化在叶绿体中合成ATP的酶与线粒体中的ATP酶十分相似。叶绿体中ATP酶也像门把位于类囊膜外侧。存在于不垛叠的类囊膜中。ATP酶可分为CF1和CF0两部分。CF0插在膜中,起质子通道作用,CF1由α3、β3、γ、δ、ε亚基组成,α、β亚基有结合ADP的功能,γ亚基控制质子流动,δ亚基与CF0结

三磷酸腺苷酶的使用介绍

ATP作为一种辅酶,有改善肌体代谢的作用,可参与体内脂肪、蛋白质、糖、核酸、核苷酸等代谢过程。它同时又是体内能量的主要来源,为吸收、分泌、肌肉收缩以及进行生化合成反应等过程提供所需要的能量。常用于心肌病、肝炎、进行性肌萎缩、神经性耳聋等疾病的治疗.ATP广泛用于改善机体代谢,以及疾病的辅助治疗,是心

ATP合成酶的合成过程中的问题

(1)如何获得Fo的精细结构图像;(2)质子通道c环与蛋白a之间的相互作用机制;(3)质子流向与马达转向的对应切换机制;(4)“转子”γ轴的储能机制;(5)“定子”上的化学循环与“转子”的步进式转动之 问如何实现高效的力学化学耦合;(6)三个催化位点顺序可逆的构象变换:βo→←βL,βL→←βT和β

ATP-5三磷酸腺苷的基本信息

中文名称:5'-三磷酸腺苷中文同义词:5'-三磷酸腺苷;腺苷-5'-三磷酸;三磷腺苷;ATP【三磷酸腺苷】英文名称:Adenosinetriphosphate英文同义词:5’-atp;9-beta-d-arabinofuranosyladenine5’-triphosphat

关于磷酸酶的功能介绍

  分泌型的酸性磷酸酶按照其最终发挥作用的位置又可分为释放到环境介质中的酸性磷酸酶和附着在根表面的酸性磷酸酶。分泌到介质中的酸性磷酸酶相对而言更易于研究,是因为可以通过悬浮细胞培养或者幼苗培养的方法,收集液体培养基中的分泌蛋白。通过生化的方法富集、分离、鉴定出不同的酸性磷酸酶,并进行相关的遗传和生理

细胞中的三磷酸腺苷ATP有什么作用?

ATP是三磷酸腺苷的简称,它 是一种复杂的分子,可作为能量包用于大多数生物体细胞中发生的数千种反应。除了人类,微生物也依赖 ATP 来满足它们的能量需求。 ATP ATP的特殊结构及原理  ATP 是大多数细胞过程的主要能量来源。ATP的组成部分是碳、氮、氢、氧和磷。由于ATP中存在不稳定的高能键,

关于氨酰tRNA合成酶的介绍

  氨酰-tRNA合成酶有四个结构域和三个活性位点。由于每种tRNA只能结合特定氨基酸,所以氨酰-tRNA合成酶必须确保tRNA和氨基酸之间的正确配对。  其四个结构域分别结合tRNA受体臂(第1结构域)、反密码子区域(第2结构域,其中1个碱基用来被识别)、ATP和正确AA(第3结构域)、错误AA(

关于三磷酸腺苷的代谢介绍

  无氧代谢  剧烈运动时,体内处于暂时缺氧状态,在缺氧状态下体内能源物质的代谢过程,称为无氧代谢。它包括以下两个供能系统: ①非乳酸能(ATP-CP)系统——一般可维持10秒肌肉活动;②乳酸能系统——一般可维持1~3分的肌肉活动。非乳酸能(ATP-CP)系统和乳酸能系统是从事短时间、 剧烈运动肌肉

关于钠钾ATP酶的基本介绍

  钠钾泵可以将细胞外相对细胞内较低浓度的钾离子送进细胞,并将细胞内相对细胞外较低浓度的钠离子送出细胞。经由以具放射性的钠、钾离子标定,可以发现钠、钾离子都会经过这个通道,钠、钾离子的浓度在细胞膜两侧也都是相互依赖的,所以显示了钠、钾离子都可以经过这个载体运输。且已知钠钾泵需消耗ATP,并可以将三个

关于钠钾ATP酶的组成介绍

  Na—K 泵由α、β两亚基组成。α亚基为分子量约 120KD 的跨膜蛋白,既有Na、K 结合位点,又具 ATP 酶活性,因此 Na—K 泵又称为 Na—K—ATP 酶。β亚基为小亚基,是分子量约 50KD 的糖蛋白。  一般认为 Na—K 泵首先在膜内侧与细胞内的 Na 结合,ATP 酶活性被激

关于ATP酶的基本内容介绍

  ATP酶又称为三磷酸腺苷酶,是一类能将三磷酸腺苷(ATP)催化水解为二磷酸腺苷(ADP)和磷酸根离子的酶,这是一个释放能量的反应。在大多数情况下,能量可以通过传递而被用于驱动另一个需要能量的化学反应。这一过程被所有已知的生命形式广泛利用。  ATP是三磷酸腺苷的英文缩写符号,它是各种活细胞内普遍

三磷酸腺苷酶的生理功能介绍

人体预存的ATP能量只能维持15秒,跑完一百公尺后就全部用完,不足的继续通过呼吸作用等合成ATP。纯净的ATP呈白色粉末状,能溶于水,作为药品可以提供能量并改善患者新陈代谢。ATP片剂可以口服,注射液可供肌肉注射或静脉注射。能源物质肌肉中储藏着多种能源物质,主要有三磷酸腺苷(ATP)、磷酸肌酸(CP

关于腺苷脱氨酶的定义介绍

  腺苷脱氨酶(也称为腺苷氨基水解酶,或ADA)是参与嘌呤代谢的酶(EC3.5.4.4)。它需要从食物中分解腺苷和组织中核酸的转换。它在人体中的主要功能是免疫系统的发育和维持。然而,ADA的完整生理作用尚未完全了解。

ATP合成的部位——ATP酶的相关介绍

  质子反向转移和合成ATP是在ATP酶(腺苷三磷酸酶 adenosine triphosphatase,ATPase)上进行的。叶绿体内囊体膜上的ATP酶也称偶联因子(coupling factor)或CF1-CF0复合体。叶绿体的ATP酶与线粒体、细菌膜上的ATP酶结构十分相似,都由两个蛋白复合

2′,5′寡腺苷酸合成酶的基本信息

在分子生物学中,2'-5'-寡腺苷酸合成酶是抗病毒酶,它通过降解病毒和宿主RNA来抵消病毒攻击。该酶在2'-特异性核苷酸转移反应中使用ATP来合成2'-5'-寡腺苷酸,激活潜伏的核糖核酸酶(RNASEL),导致病毒RNA的降解和病毒复制的抑制。

25寡腺苷酸合成酶的基本信息

在分子生物学中,2'-5'-寡腺苷酸合成酶是抗病毒酶,它通过降解病毒和宿主RNA来抵消病毒攻击。该酶在2'-特异性核苷酸转移反应中使用ATP来合成2'-5'-寡腺苷酸,激活潜伏的核糖核酸酶(RNASEL),导致病毒RNA的降解和病毒复制的抑制。

关于ATP酶的基本功能介绍

  跨膜ATP酶可以为细胞输入许多新陈代谢所需的物质并输出毒物、代谢废物以及其他可能阻碍细胞进程的物质。例如,钠钾ATP酶(又称为钠/钾离子ATP酶)能够调节细胞内钠/钾离子的浓度,从而保持细胞的静息电位;氢钾ATP酶(又称为氢/钾离子ATP酶或胃质子泵)可以使胃内保持酸化环境。  除了作为离子交换

关于钠钾ATP酶相关的疾病介绍

  经科学研究,发现Na+-K+泵在人体的正常代谢中具有非常重要的作用,与一些疾病的发生也有着密切的关系.如脑水肿、白内障、囊纤维化、癫痫、偏头痛、高血压等。另外最近的研究表明:Na+-K+泵还与减肥有着千丝万缕的关系。  在这里,仅就白内障和高血压与Na+-K+泵的关系做一点介绍。  1、与白内障

关于硷性磷酸酶试验的基本介绍

  硷性磷酸酶试验是检验精斑的一种预试验。精液中含有大量酸性磷酸酶,而其他体液分泌液中含量很少。酸性磷酸酶在适当温度和酸性溶液中,能使磷酸苯二钠分解,产生萘酚,萘酚经铁氰化钾作用与氨基安替比林结合,产生红色醌类化合物。检材若为精液,滴加试剂后立即出现浅红色至深红色反应,颜色深浅因精斑浓度而异,若浓度