中子衍射方法的技术特点

对于非极化中子束,它在磁性晶体上的散射,中子衍射峰的强度是核衍射强度和磁衍射强度之和。对于极化中子束,必须考虑到核散射振幅和磁散射振幅之间的相干现象,使衍射峰强度带来加强或减弱的效果。......阅读全文

关于中子活化分析的特点介绍

  分析元素多:理论上可以分析80种元素,实际上一个式样一般可以测定40~50个元素  灵敏度高:对大部分元素可达到10 ~ 10g  非破坏:一般式样不需要作破坏性处理,可直接送入反应堆照射、然后进行测量和分析。  基体无关性:由于中子和伽玛的穿透性很强,一般说来与式样基体种类关系不大。但是式样在

中子剂量当量率仪的技术参数

  探测器:6LiI(Eu)闪烁晶体  能量范围:0.025eV~16MeV  剂量率:0.1μSv·h-1 ~ 100m Sv·h-1  剂量:0.01μSv ~ 10Sv  中子灵敏度:0.6cps/(μ Sv·h-1),(252Cf)  角相应:≤±25% (0~±90,252Cf)  测量重

粒度测量方法之激光衍射成像技术

    激光衍射是一种快速,高效,自动化和可靠的测定粒径的方法。它已成为许多行业的方法,并用于各种应用。现代激光衍射系统的常规使用相对简单,系统允许相对缺乏经验的人员生成可靠的数据。然而,实现精确测量的重要步骤是为相应应用开发合适的测量方法。  这种方法开发通常专供专家使用。因此设备制造商正在努力开

电子衍射的方法

1、如表面科学中的低能电子衍射(LEED),主要应用于高取向晶体表面晶格的研究,比如畸变,吸附。LEED结构也应用在透射电子显微镜(TEM)中,利用聚焦到很小光斑的电子束对纳米结构中的局域有序做结构探测。LEED只能够作晶格类型分析,不能进行元素分析。2、反射式高能电子衍射(RHEED),主要应用于

常见的单晶衍射和粉末衍射方法有哪些

劳埃法劳埃法以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线。根据底片位置的不同,劳埃法可以分为透射劳埃法和背射劳埃法。背射劳埃法不受样品厚度和吸收的限制,是常用的方法。劳埃法的衍射花样由若干劳埃斑组成,每一个劳埃斑相应于晶面的1~n级反射,各劳埃斑的分布构成一条晶带

常见的单晶衍射和粉末衍射方法有哪些

劳埃法劳埃法以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线。根据底片位置的不同,劳埃法可以分为透射劳埃法和背射劳埃法。背射劳埃法不受样品厚度和吸收的限制,是常用的方法。劳埃法的衍射花样由若干劳埃斑组成,每一个劳埃斑相应于晶面的1~n级反射,各劳埃斑的分布构成一条晶带

X射线衍射技术简介

物质结构的分析尽管可以采用中子衍射、电子衍射、红外光谱、穆斯堡尔谱等方法,但是X射线衍射是最有效的、应用最广泛的手段,而且X射线衍射是人类用来研究物质微观结构的第一种方法。X射线衍射的应用范围非常广泛,现已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中,成为一种重要的实验方法和结构分析手

材料表面分析技术综述

材料表面分析技术是通过分析探束或探针与材料表面发生作用产生的许多信息而研究表面的。主要分为表面形貌分析、表面组分分析和表面结构分析等几大部分,其中表面形貌分析技术有扫描电镜、透射电镜、扫描隧道显微镜、原子力显微镜等;表面组分分析技术主要有俄歇电子能谱、光电子能谱、二次离子质谱、电子探针显微分析、离子

中子、中子源、散裂中子源科学研究

什么是中子?  中子由查德威克于1932年发现,是组成物质的基本粒子之一,不带电,因此被称为中子。   原子核由带正电的质子和不带电的中子组成  在宇宙中,中子含量非常丰富,几乎占了所有可见物质的一半。但对于物理和生物材料领域的研究来说,缺少一种足够亮度的中子源。正如我们希望能够在黑暗中有一盏明灯,

布拉格衍射的特点和类型

布拉格衍射不仅对方向有选择性,还对波长有选择性。晶格衍射可根据晶格种类和光源单色性分类。按照晶格分类,一种是单晶的布拉格衍射,一种是多晶的布拉格衍射。

X射线衍射技术的基本构成

(1) 高稳定度X射线源 提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。(2) 样品及样品位置取向的调整机构系统 样品须是单晶、粉末、多晶或微晶的固体块。(3) 射线检测器 检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统

X-射线衍射技术的主要应用

物相分析物相分析是X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应

EBSD与其他衍射技术的比较

EBSD与其他衍射技术的比较X射线衍射或中子衍射不能进行点衍射分析。除了EBSD外,还有其他的点分析技术,主要有SEM中的电子通道花样(SAC)和透射电子显微镜(TEM)中的微衍射(MD),一般认为EBSD已经取代SAC,而TEM中的微衍射(MD)需要严格的样品制备,且不可能进行自动快速测量。TEM

中子水分仪ZSY5A工作原理及特点

 中子水分仪ZSY-5A工作原理:   当中子源发射出5~10MeV的高能快中子穿透料仓的仓壁,到达含有水分的焦炭时,快中子射线同时与焦炭中的碳元素C和水分子H2O相互作用。根据中子核物理学的慢化理论,水分子比碳元素慢化快中子能力大25倍,可以认为焦炭中反射出来的热中子(能量≤0.025MeV)主要

现实版达芬奇密码与中子活化技术

  电影《达芬奇密码》上演后,这位本身就有着诸多神秘色彩的大艺术家、科学家等头衔的达芬奇的神秘感被提高到了一个新的层次。   直到现在为止,每年仍然有不少人力和财力都投入到了对达芬奇作品的研究中。其中就有一位意大利艺术学者Maurizio Serancini 花费了30多年的时间,欲破解佛罗伦萨市

精准高效,硼中子俘获治疗技术快速发展

癌症是人类健康的主要威胁之一。近年来,一种新的靶向精准放射治疗手段——硼中子俘获治疗技术(BNCT)快速发展,对于复发性、浸润性、局部转移肿瘤,特别是复发性脑胶质瘤、头颈部复发性肿瘤、恶性黑色素瘤和恶性脑膜瘤等展现出较好的治疗效果。对于其他常见肿瘤如肝癌、肺癌、前列腺癌,该项技术也开展了临床试治,取

中子仪测定土壤水分技术介绍

中国中子仪研制起于20世 纪60年代,这期间的应用主要在自动化设备上应用,70年代南京大学和兰州大学研制的中子仪投入应用,在工业自动化上连续测定原料水分、原材料厚度、材料 比表面积、测定材料含氢量等得到广泛应用;中子仪测定土壤容积含水量方法是测水应用的一个分支。目前,生产的中子仪测量准确度和精度都能

衍射光栅的鉴别方法

膜材正面(光栅面)圆弧成型稳定,排列均匀,放大观察圆滑,手摸有明显凸起感,背面平整、无压痕;劣质品达不到上述标准,尤其背面手感有明显凹入压痕者,易造成粘接发虚不实、解像力差、图像眼晕眼花,为伪劣次次品。合格膜材线条成型顺直,无走斜扭曲现象。可打印直线检测,也可提起膜光栅对着窗户以窗格为参照,透光直接

X射线衍射分析有什么特点

物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开

X射线衍射分析有什么特点

物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开

X射线衍射分析有什么特点

物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开

X射线衍射分析有什么特点

物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开

X射线衍射分析有什么特点

物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开

X射线衍射分析有什么特点

物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开

X射线衍射分析有什么特点

物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开

X射线衍射分析有什么特点

物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开

X射线衍射分析有什么特点

物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开

X射线衍射分析有什么特点

物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开

X射线衍射分析有什么特点

物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开

X射线衍射分析有什么特点

物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开