基因转移技术的原理和应用
基因转移指应用物理、 化学或生物学方法将目的基因转移入受体细胞内的过程。基因转移技术在基因工程、生物医学研究、基因治疗、植物农作物品种改 造等领域被广泛应用。通过基因转移将遗传信息从一个基因组向另一个基因组转移,使 转移的遗传信息在受者生物表达。......阅读全文
基因治疗的概念和技术应用
基因治疗(gene therapy)是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,以达到治疗目的。其中也包括转基因等方面的技术应用,也就是将外源基因通过基因转移技术将其插入病人的适当的受体细胞中,使外源基因制造的产物能治疗某种疾病。从广义说,基因治疗还可包括从DNA水平采取的治
基因物质转移和重组的途径
(1)转化:是受体菌直接摄取供体菌提供的游离DNA片段整合重组,使受体菌的性状发生变异的过程。(2)转导:是以温和噬菌体为媒介,将供体菌的基因转移到受体菌内,导致受体菌基因改变的过程。(3)接合:是受体菌和供体菌直接接触,供体菌通过性菌毛将所带有的F质粒或类似遗传物质转移至受体菌的过程。(4)溶原性
细菌基因物质的转移和重组
1.转化:受体菌直接摄取供体菌提供的游离DNA片段整合重组。2.转导:以噬菌体为媒介 ,将供体菌的基因转移到受体菌内。3.接合:性菌毛 将供体菌所带有的F质粒或类似遗传物质转移至受体菌的过程。主要见于革兰阴性菌。4.溶原性转换:噬菌体的DNA与细菌染色体重组。5.原生质体融合:两种失去细胞壁的原生质
全息图技术的原理和应用
全息图,是以激光为光源,用全景照相机将被摄体记录在高分辨率的全息胶片上构成的图。以干涉条纹形式存在。用同种激光照射,胶片前后方可出现原景物的虚实两个立体影像,视角不同,所见影像也不同。全息图是一种三维图像,它与传统的照片有很大的区别。传统的照片呈现的是真实的物理图像,而全息图则包含了被记录物体的尺寸
热泵烘干干燥技术的原理和应用
一、热泵干燥机的原理 热泵干燥机是利用逆卡诺原理,吸收空气的热量并将其转移到房内,实现烘干房的温度提高,配合相应的设备实现物料的干燥。热泵干燥机由压缩机——换热器(内机)——节流器——吸热器(外机)——压缩机等装置构成了一个循环系统。冷媒在压缩机的作用下在系统内循环流动。它在压缩机内
基因转移的转移方法
基因转移是用物理的、化学的或生物学的方法将目的基因导入受体细胞并使之表达的一种技术。物理方法包括显微镜注射法、电脉冲介导法。显微注射法是应用特别的玻璃显微注射器在显微镜下把重组DNA导入靶细胞;电脉冲介导法又称电穿孔法,是指在高压电脉冲的作用下,使细胞膜上出现瞬间微小的孔洞,从而介导不同细胞之间的原
基因转移的转移方法
基因转移是用物理的、化学的或生物学的方法将目的基因导入受体细胞并使之表达的一种技术。物理方法包括显微镜注射法、电脉冲介导法。显微注射法是应用特别的玻璃显微注射器在显微镜下把重组DNA导入靶细胞;电脉冲介导法又称电穿孔法,是指在高压电脉冲的作用下,使细胞膜上出现瞬间微小的孔洞,从而介导不同细胞之间的原
PCR技术原理、实验步骤和应用
一、实验目的1.掌握聚合酶链式反应的原理。2. 掌握移液枪和PCR仪的基本操作技术。二、实验原理PCR技术,即聚合酶链反应(polymerase chain reaction,PCR)是由美国PE Cetus公司的Kary Mullis在1983年(1993年获诺贝尔化学奖)建立的。这项技术可在试
PCR技术原理、实验步骤和应用
一、实验目的1.掌握聚合酶链式反应的原理。2. 掌握移液枪和PCR仪的基本操作技术。二、实验原理PCR技术,即聚合酶链反应(polymerase chain reaction,PCR)是由美国PE Cetus公司的Kary Mullis在1983年(1993年获诺贝尔化学奖)建立的。这项技术
原位杂交技术原理和应用
原理: 荧光,又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。
PCR技术原理、实验步骤和应用
一、实验目的1.掌握聚合酶链式反应的原理。2. 掌握移液枪和PCR仪的基本操作技术。二、实验原理PCR技术,即聚合酶链反应(polymerase chain reaction,PCR)是由美国PE Cetus公司的Kary Mullis在1983年(1993年获诺贝尔化学奖)建立的。这项技术可在试管
PCR技术原理、实验步骤和应用
一、实验目的1.掌握聚合酶链式反应的原理。2. 掌握移液枪和PCR仪的基本操作技术。二、实验原理PCR技术,即聚合酶链反应(polymerase chain reaction,PCR)是由美国PE Cetus公司的Kary Mullis在1983年(1993年获诺贝尔化学奖)建立的。这项技术可在
免疫层析技术原理和应用
免疫层析检测技术是20世纪90年代出现的新兴免疫检测技术,其特点是应用抗原-抗体免疫学反应和层析反应,并以干片法试纸的形式,达到快速、准确地显色以检测待测物之目的。 在医用临床检测技术发展过程中,放射免疫方法是第一代,酶联免疫方法是第二代,而金标单克隆抗体快速检测试纸是正在发展的第三代。如今,
真空转移的功能和应用
真空转移是硝酸纤维素膜或尼龙膜放在真空室上面的多孔屏上,再将凝胶置于滤膜上,缓冲液从上面的个贮液槽中流下,洗脱出凝胶中的DNA,使其沉积在滤膜上。 它们一般是将硝酸纤维素膜或尼龙膜放在真空室上面的多孔屏上,再将凝胶置于滤膜上,缓冲液从上面的一个贮液槽中流下,洗脱出凝胶中的DNA,使其沉积在滤膜上。
基因敲除技术的理论基础和应用
基因敲除就是通过同源重组将外源基因定点整合入靶细胞基因组上某一确定的位点,以达到定点修饰改造染色体上某一基因的目的的一种技术。它克服了随机整合的盲目性和偶然性,是一种理想的修饰、改造生物遗传物质的方法。这项技术的诞生可以说是分子生物学技术上继转基因技术后的又一革命。尤其是条件性、诱导性基因打靶系统的
基因技术的原理
基因(遗传因子)是遗传的物质基础,是DNA或RNA分子上具有遗传信息的特定核苷酸序列。基因通过复制把遗传信息传递给下一代,使后代出现与亲代相似的性状。人类大约有几万个基因,储存着生命孕育、生长、凋亡过程的全部信息,通过复制、表达、修复,完成生命繁衍、细胞分裂和蛋白质合成等重要生理过程。生物体的生
数码液相芯片技术的原理和应用
液相芯片概念液相芯片,也称为微球体悬浮芯片(suspension array,liquid chip),是基于微球编码技术的新型生物芯片技术平台,它是在不同编码的微球上进行抗原抗体、酶底物、配体受体的结合反应及核酸杂交反应,通过两束不同的激光分别检测微球编码和报告荧光来达到定性和定量的目的,一个
超临界萃取的技术原理、特点和应用
一、超临界萃取的技术原理超临界CO2流体萃取(SFE)分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得
基因转移的转移步骤
(1)配制下列溶液①2×HEPES-缓冲盐溶液(HBS)②2mol/L CaCl2③0.1×TE(pH8.0)用0.22μm滤器过滤除菌,分装贮存于4℃。④DNA:将DNA(约20μg/106细胞)溶于0.1×TE(pH8.0),使用浓度为40μg/ml。为使转化效率达到最高,质粒DNA应用CsCl
基因转移的转移步骤
(1)配制下列溶液①2×HEPES-缓冲盐溶液(HBS)②2mol/L CaCl2③0.1×TE(pH8.0)用0.22μm滤器过滤除菌,分装贮存于4℃。④DNA:将DNA(约20μg/106细胞)溶于0.1×TE(pH8.0),使用浓度为40μg/ml。为使转化效率达到最高,质粒DNA应用CsCl
基因转移的转移步骤
(1)配制下列溶液①2×HEPES-缓冲盐溶液(HBS)②2mol/L CaCl2③0.1×TE(pH8.0)用0.22μm滤器过滤除菌,分装贮存于4℃。④DNA:将DNA(约20μg/106细胞)溶于0.1×TE(pH8.0),使用浓度为40μg/ml。为使转化效率达到最高,质粒DNA应用CsCl
什么是基因扩增?基因扩增的应用和技术优势
又称无细胞分子克隆系统或特异性DNA序列体外引物定向酶促扩增法,是基因扩增技术的一次重大革新。可将极微量的靶DNA特异地扩增上百万倍,从而大大提高对DNA分子的分析和检测能力,能检测单分子DNA或对每10万个细胞中仅含1个靶DNA分子的样品,因而此方法立即在分子生物学、微生物学、医学及遗传学等多领域
转基因技术的技术原理
转基因技术是利用现代生物技术,将人们期望的目标基因,经过人工分离、重组后,导入并整合到生物体的基因组中,从而改善生物原有的性状或赋予其新的优良性状。除了转入新的外源基因外,还可以通过转基因技术对生物体基因的加工、敲除、屏蔽等方法改变生物体的遗传特性,获得人们希望得到的性状。这一技术的主要过程包括外源
转基因技术的技术原理
转基因技术是利用现代生物技术,将人们期望的目标基因,经过人工分离、重组后,导入并整合到生物体的基因组中,从而改善生物原有的性状或赋予其新的优良性状。除了转入新的外源基因外,还可以通过转基因技术对生物体基因的加工、敲除、屏蔽等方法改变生物体的遗传特性,获得人们希望得到的性状。这一技术的主要过程包括外源
转基因技术的技术原理
转基因技术的原理是将人工分离和修饰过的优质基因,导入到生物体基因组中,从而达到改造生物的目的。由于导入基因的表达,引起生物体的性状,可遗传的修饰改变,这一技术称之为人工转基因技术(Transgene technology)。 人工转基因技术就是把一个生物体的基因转移到另一个生物体DNA中的生物
基因敲除技术的技术应用
基因敲除技术主要应用于动物模型的建立,而最成熟的实验动物是小鼠,对于大型哺乳动物的基因敲除模型还处于探索阶段。近年来,牛、羊、猪、猴等大型哺乳动物实现了基因敲除。但由于狗的生殖生理较为特殊,基因敲除狗的培育难度大为增加,狗基因组的定点修饰一直未获成功。针对这一问题,研究团队设计了一个自体移植的策略,
基因敲除技术的技术应用
基因敲除技术主要应用于动物模型的建立,而最成熟的实验动物是小鼠,对于大型哺乳动物的基因敲除模型还处于探索阶段。近年来,牛、羊、猪、猴等大型哺乳动物实现了基因敲除。但由于狗的生殖生理较为特殊,基因敲除狗的培育难度大为增加,狗基因组的定点修饰一直未获成功。针对这一问题,研究团队设计了一个自体移植的策略,
基因芯片技术的应用和发展趋势
随着基因芯片技术的日渐成熟, 在功能基因组、疾病基因组、系统生物学等领域中得到了广泛的应 用, 已经发表了上万篇研究论文, 每年发表的论文呈现增长的趋势. 芯片制备技术极大地推进了生物芯片的发展, 从实验室手工或机械点制芯片到工业化原位合成制备, 从几百个点的芯片到几百万点的高密度芯片, 生物芯片从
医学资料笔记2-基因的转移和重组
细菌间基因的转移与重组是发生遗传性变异的重要原因之一。DNA可以从一种生物转移至另一生物,整合至染色体,改变其遗传信息的组成,这类基因转移的方式称之为基因水平转移。这类遗传物质的交流可发生在亲缘、远缘,甚至无亲缘关系的生物之间。根据DNA片段的来源及交换方式等不同,将基因转移和重组分为转化、转导
同位素示踪技术的原理和应用
同位素示踪技术(isotopic tracer technique)是利用放射性同位素或经富集的稀有稳定核素作为示踪剂,研究各种物理、化学、生物、环境和 材料等领域中科学问题的技术。示踪剂是由示踪原子或分子组成的物质。 示踪原子(又称标记原子)是其核性质易于探测的原子。含有示踪原子的 化合物,称为标