G蛋白介导的信号转导途径

G蛋白可与鸟嘌呤核苷酸可逆性结合。由γ亚基组成的异三聚体在膜受体与效应器之间起中介作用。小G蛋白只具有G蛋白亚基的功能,参与细胞内信号转导。信息分子与受体结合后,激活不同G蛋白,有以下几种途经:(1)腺苷酸环化酶途径 通过激活G蛋白不同亚型,增加或抑制腺苷酸环化酶(AC)活性,调节细胞内cAMP浓度。cAMP可激活蛋白激酶A(PKA),引起多种靶蛋白磷酸化,调节细胞功能。(2) 磷脂酶途径 激活细胞膜上磷脂酶C(PLC),催化质膜磷脂酰肌醇二磷酸(PIP2)水解,生成三磷酸肌醇(IP3)和甘油二酯(DG)。IP3促进肌浆网或内质网储存的Ca2+释放。Ca2+可作为第二信使启动多种细胞反应。Ca2+与钙调蛋白结合,激活Ca2+/钙调蛋白依赖性蛋白激酶或磷酸酯酶,产生多种生物学效应。DG与Ca2+能协调活化蛋白激酶C(PKC)。......阅读全文

发现非典型G蛋白信号转导调节因子同源结构域

中国科学院广州生物医药与健康研究院刘劲松课题组通过结构生物学研究,在分选转运蛋白(SNXs)中发现了一类新型的非典型G蛋白信号转导调节因子(RGS)同源结构域(RGS homology,RH)。相关研究近日在线发表于Journal of molecular biology。博士生张玉龙为该论文第一作

发现非典型G蛋白信号转导调节因子同源结构域

  中国科学院广州生物医药与健康研究院刘劲松课题组通过结构生物学研究,在分选转运蛋白(SNXs)中发现了一类新型的非典型G蛋白信号转导调节因子(RGS)同源结构域(RGS homology,RH)。相关研究近日在线发表于Journal of molecular biology。博士生张玉龙为该论文第

Cell:纤毛G蛋白偶联受体与细胞外囊泡之间信号转导调控

  纤毛(cilium)是一种细胞表面比细胞小5000倍的小仓室,集中了Hedgehog信号传导、视觉、嗅觉和体重稳态的受体。通过维持其自身的第二信使环状AMP(cAMP)和Ca2+的浓度,纤毛为信号分子提供了独特的反应条件,这些信号分子在通路激活时动态进入和离开纤毛。例如,Hedgehog通路的激

G蛋白主要的效应器及相关信息的转导途径介绍

(一)腺苷酸环化酶(AC)系统腺苷酸环化酶系统主要介导cAMP-蛋白激酶A途径,是激素调节物质代谢的主要途径。胰高血糖素、肾上腺素和促肾上腺皮质激素等与靶细胞质膜上的特异性受体结合,形成激素受体复合物而激活受体。活化的受体催化G蛋白形成αs-GTP。释放的αs-GTP能激活腺苷酸环化酶,催化ATP转

免疫球蛋白G-(-I-g-G-)-的纯化

硫酸铵沉淀可纯化小鼠抗体的所有亚类和其他种属抗体,本方案也可用于纯化任何种 属 的 IgM、 IgG 和 IgA。材 料腹水 或 MAb 上 清(单 元 1.4)VPBS饱 和 硫 酸 铵(SAS)硼 酸 盐 缓 冲 液(可选)聚丙燏酰胺葡聚糖凝胶 S-200 Superfine (Pharmaci

受体鸟苷酸环化酶信号转导途径

一氧化氮(NO)和一氧化碳(CO)可激活鸟苷酸环化酶(GC),增加cGMP生成,cGMP激活蛋白激酶G(PKG),磷酸化靶蛋白发挥生物学作用。

受体鸟苷酸环化酶信号转导途径

一氧化氮(NO)和一氧化碳(CO)可激活鸟苷酸环化酶(GC),增加cGMP生成,cGMP激活蛋白激酶G(PKG),磷酸化靶蛋白发挥生物学作用。

我国揭示PYL介导的ABA信号途径拮抗非ABA途径渗透胁迫应答

  近日,《Cell Reports》杂志在线发表了植物逆境中心朱健康研究组和赵杨研究组题为“Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 acti

G蛋白的种类

G蛋白的种类已多达40余种,大多数存在于细胞膜上,由α、β、γ三个不同亚单位构成,总分子量为100kDa左右。其中β亚单位在多数G蛋白中都非常类似,分子量36kDa左右。γ亚单位分子量在8-11kDa之间。Gα蛋白分为Gs、Gi、Go、Gq、G12、G13等六类。这些不同类型的G蛋白在信号传递过程各

G蛋白的种类?

G蛋白的种类已多达40余种,大多数存在于细胞膜上,由α、β、γ三个不同亚单位构成,总分子量为100kDa左右。其中β亚单位在多数G蛋白中都非常类似,分子量36kDa左右。γ亚单位分子量在8-11kDa之间。Gα蛋白分为Gs、Gi、Go、Gq、G12、G13等六类。这些不同类型的G蛋白在信号传递过程各

G蛋白的介绍

G蛋白是指能与鸟苷二磷酸结合,具有GTP水解酶活性的一类信号传导蛋白。G蛋白参与的信号转导途径在动植物体中是一种非常保守的跨膜信号转导机制。当细胞转导胞外信号时,首先由不同类型的G蛋白偶联受体(GPCRs)接受细胞外各种配基(胞外第一信使)。然后受体被活化,进一步激活质膜内侧的异三聚体G蛋白,后者再

G蛋白的蛋白调控介绍

G蛋白在信号转导过程中起着分子开关的作用。与GDP(紫色)结合后,G蛋白处于非活性状态。GTP取代GDP后,G蛋白活化并传递信号。G蛋白形式多样,大多数用于信号传递,有些则在诸如蛋白质合成中起重要作用。本文主要介绍异三聚体G蛋白,它由三条不同的链组成,分别为α(棕黄色)β(蓝色)γ(绿色)。红色部分

广州健康院发现内涵体上GPCRG蛋白信号转导的分子调控新机制

中国科学院广州生物医药与健康研究院揭示了分选转运蛋白SNX25通过氧化还原依赖的方式调控内涵体GPCR-G蛋白信号转导的分子机制。相关研究成果以Redox-Modulated SNX25 as a Novel Regulator of GPCR-G Protein Signaling from En

抗原激活信号转导磷脂酰肌醇途径的启动

  钙调磷酸酶是一种丝、苏氨酸磷酸酶而不是PTK。另一方面,与胞膜内侧相联的DAG则直接激活PKC。后面熔会捍到,钙调磷酸酶和PKC主要分别活化两种重要的转录因子NF—AT和NF—cB。因而在这一条信号转导的下游通路中,实际上再一分为二,形成钙调磷酸酶参与的途径。和PKC介导的途径。由于一个PLCγ

细胞受体类型,特点及重要的细胞信号转导途径

细胞表面受体:离子通道受体,G蛋白偶联型受体,酶偶联型受体,催化型受体细胞内受体:细胞内离子通道,核受体常考试的重要的细胞信号转导途径有:(1)Gs蛋白--AC--cAMP/PKA(2)Gq--IP3/DG双信使通路(3)生长因子受体--Ras--MAPK信号通路等

Ras2MAPK信号转导途径Ras/Raf通路的介绍

  至今,Ras/Raf通路是最明确的信号转导通路.当GTP取代GDP与Ras结合,Ras被激活后,再激活丝苏氨酸激酶级联放大效应,招集细胞浆内Raf1丝苏氨酸激酶至细胞膜上,Raf激酶磷酸化MAPK激(MAPKK),MAPKK激活MAPK.MAPK被激活后,转至细胞核内,直接激活转录因子.另外,M

G蛋白的蛋白调控的简介

  G蛋白在信号转导过程中起着分子开关的作用。与GDP(紫色)结合后,G蛋白处于非活性状态。GTP取代GDP后,G蛋白活化并传递信号。G蛋白形式多样,大多数用于信号传递,有些则在诸如蛋白质合成中起重要作用。本文主要介绍异三聚体G蛋白,它由三条不同的链组成,分别为α(棕黄色)β(蓝色)γ(绿色)。红色

遗传发育所揭示生长素介导乙烯反应的信号转导过程

  植物激素生长素和乙烯协同调控植物根的生长。乙烯促进了生长素的合成与运输,生长素受体TIR1/AFB2感受到生长素后,结合并泛素化转录抑制子Aux/IAA蛋白,使其通过26S蛋白酶体途径降解,从而将转录因子ARF释放出来调控下游基因的表达。目前介导乙烯反应的生长素信号过程并不清楚。   中国科学

经B淋巴细胞抗原受体介导的信号转导分子基础

  B淋巴细胞是另一群重要的免疫活性细胞,它有两个基本的功能:一方面作为免疫效应细胞直接参与免疫应答,介导体液免疫;另一方面作为特异性的抗原提呈细胞选择性地捕获抗原并提呈给T细胞,协同和调节T细胞免疫应答。B细胞以上的两个基本功能是通过其表面的抗原受体所介导。B细胞抗原受体的信号介导由许多分子参与,

通道蛋白介导的易化扩散

运输过程借助于穿越脂双分子层的通道蛋白完成。通道蛋白中心是亲水性小孔,不同种类的通道蛋白可分别运输离子,水等小分子。主要运输离子的通道蛋白也称为离子通道,对离子具有高度亲和力和高度选择性。离子通道运输速率高,每秒运输离子数量多达几百万个,载体蛋白每秒运载的分子数目则不足一千个。某些离子通道蛋白星关闭

载体蛋白介导的易化扩散

运输过程是通过载体蛋白发生可逆的构象变化实现的。载体蛋白是膜上与物质运输有关的穿膜蛋白,对所运输的物质具有高度选择性,当载体蛋白一端表面的特异结合部位与专一的溶质分子结合,引发载体蛋白空间构象改变,将运送的溶质分子从结合的一侧转运到膜的另一侧;变构的载体蛋白对被转运物质的亲和力同时发生改变,于是被转

内含肽介导的蛋白连接

通过改变裂解条件以及对内含肽进行适当修饰,可以生物合成c端带有硫酯键或N端带有半光氨酸的蛋白质分子。两种蛋白质混合以后,硫酯键和半光氨酸利用“自然化学连接”(native chemical ligation)的原理进行自发的连接反应,在硫酯和半光氨酸之间形成肽键,从而将两种蛋白质连接起来。自然化学连

通道蛋白介导的易化扩散

运输过程借助于穿越脂双分子层的通道蛋白完成。通道蛋白中心是亲水性小孔,不同种类的通道蛋白可分别运输离子,水等小分子。主要运输离子的通道蛋白也称为离子通道,对离子具有高度亲和力和高度选择性。离子通道运输速率高,每秒运输离子数量多达几百万个,载体蛋白每秒运载的分子数目则不足一千个。某些离子通道蛋白星关闭

候选院士PLoS-Genetics解析水稻信号传导

  来自中科院遗传与发育生物学研究所和中国水稻研究所的研究人员发表了题为“The U-Box E3 Ubiquitin Ligase TUD1 Functions with a Heterotrimeric G α Subunit to Regulate Brassinosteroid-Medi

G蛋白的功能特点

G蛋白是指能与鸟苷二磷酸结合,具有GTP水解酶活性的一类信号传导蛋白。G蛋白参与的信号转导途径在动植物体中是一种非常保守的跨膜信号转导机制。当细胞转导胞外信号时,首先由不同类型的G蛋白偶联受体(GPCRs)接受细胞外各种配基(胞外第一信使)。然后受体被活化,进一步激活质膜内侧的异三聚体G蛋白,后者再

G蛋白的主要作用

G蛋白在信号转导过程中起着分子开关的作用。与GDP(紫色)结合后,G蛋白处于非活性状态。GTP取代GDP后,G蛋白活化并传递信号。G蛋白形式多样,大多数用于信号传递,有些则在诸如蛋白质合成中起重要作用。本文主要介绍异三聚体G蛋白,它由三条不同的链组成,分别为α(棕黄色)β(蓝色)γ(绿色)。红色部分

小G蛋白的定义

小G蛋白(Small G Protein)因分子量只有20~30KD而得名,同样具有GTP酶活性,在多种细胞反应中具有开关作用。第一个被发现的小G蛋白是Ras,它是ras基因的产物。其它的还有Rho、SEC4、YPT1等,微管蛋白β亚基也是一种小G蛋白。

活性G蛋白的检测

来自细胞外的信号绝大多数都是要通过分布于细胞表面的各种受体传导到细胞内部,从而引起细胞的生理反应,发挥相应的功能。细胞表面最大的受体家族就是G蛋白偶联的受体(G-Protein-Coupled Receptors, GPCRs)。编码GPCR的基因有1000多个,占人类基因组总数超过2%。G蛋白

G蛋白的基本介绍

  在细胞内信号传导途径中起着重要作用的GTP结合蛋白,由α,β,γ三个不同亚基组成。激素与激素受体结合并诱导GTP与G蛋白结合的GDP进行交换,活化的G蛋白可激活位于信号传导途径中下游的腺苷酸环化酶。G蛋白将细胞外的第一信使肾上腺素等激素和细胞内的腺苷酸环化酶催化的腺苷酸环化生成的第二信使cAMP

G蛋白的基本介绍

  G蛋白是指能与鸟苷二磷酸结合,具有GTP水解酶活性的一类信号传导蛋白。G蛋白参与的信号转导途径在动植物体中是一种非常保守的跨膜信号转导机制。当细胞转导胞外信号时,首先由不同类型的G蛋白偶联受体(GPCRs)接受细胞外各种配基(胞外第一信使)。然后受体被活化,进一步激活质膜内侧的异三聚体G蛋白,后