扫描电子显微镜的研究与发展

1932年,Knoll 提出了SEM可成像放大的概念,并在1935年制成了极其原始的模型。1938年,德国的阿登纳制成了第一台采用缩小透镜用于透射样品的SEM。由于不能获得高分辨率的样品表面电子像,SEM一直得不到发展,只能在电子探针X射线微分析仪中作为一种辅助的成像装置。此后,在许多科学家的努力下,解决了SEM 从理论到仪器结构等方面的一系列问题。最早期作为商品出现的是1965年英国剑桥仪器公司生产的第一台SEM,它用二次电子成像,分辨率达25 nm,使SEM进入了实用阶段。1968年在美国芝加哥大学,Knoll 成功研制了场发射电子枪,并将它应用于SEM,可获得较高分辨率的透射电子像。1970年他发表了用扫描透射电镜拍摄的铀和钍中的铀原子和钍原子像,这使SEM又进展到一个新的领域。2021年,全数字化扫描电子显微镜新品在无锡惠山发布。......阅读全文

狂犬疫苗的发展与研究

1882 年,法国人路易·巴斯德先生首次成功发明了人用狂犬病疫苗,之后经历了早期的动物神经组织疫苗、禽胚疫苗、细胞培养的粗制疫苗,发展到21世纪技术日趋完善的原代地鼠肾细胞、鸡胚细胞、人二倍体细胞和 Vero 细胞培养的纯化疫苗。人二倍体细胞疫苗(Human Diploid Cell Rabies

酵母多糖的研究与发展

2001年,哈特韦尔、纳斯、亨特因发现了控制细胞分裂的关键性物质而获得诺贝尔医学奖。让人们意想不到的是,2002年10月7日,诺贝尔医学奖又再次被授予发现了控制细胞程序化死亡基因的罗伯特·霍维茨等三位专家,从而开创了同一领域研究连续两年获同一诺贝尔奖项的先例,由此也引发了世界医学对靶向抑制病毒物质-

冈崎片段的研究与发展

冈崎片段是相对较短的DNA核苷酸序列(真核生物中大约有150到200个碱基对长),它们的合成是不连续的,并随后通过DNA连接酶连接在一起,形成DNA复制过程中的滞后链。冈崎片段是20世纪60年代两位日本分子生物学家、名古屋大学的一对校友夫妇冈崎令治和冈崎恒子共同发现的。

扫描电子显微镜的操作步骤与注意事项

一、 样品制备  将分散好的样品滴于铜片上,干燥后将载有样品的铜片粘在样品座上的导电胶带上(对于大颗粒样品可直接将样品粘在导电胶带上)。  对于导电性不好的样品必须蒸镀导电层,通常为蒸金:将样品座置于蒸金室中,合上盖子,打开通气阀门,对蒸金室进行抽真空。选择好适当的蒸金时间,达到真空度定好时间后加电

扫描电子显微镜

扫描电子显微镜的电子束不穿过样品,仅以电子束尽量聚焦在样本的一小块地方,然后一行一行地扫描样本。入射的电子导致样本表面被激发出次级电子。显微镜观察的是这些每个点散射出来的电子,放在样品旁的闪烁晶体接收这些次级电子,通过放大后调制显像管的电子束强度,从而改变显像管荧光屏上的亮度。图像为立体形象,反映了

原子力显微镜与扫描电子显微镜

原子力显微镜与扫描电子显微镜尽管SEM 和AFM 的横向分辨率是相似的,但每种方法又会根据观察者对试样表面所要了解的信息不同而提供更完美的表征。SEM 和AFM 两种技术最基本的区别在于处理试样深度变化时有不同的表征。极其平整的表面既可能是天然形成的,如某些矿物晶体表面,也可能是经过处理的,如抛光和

扫描探针显微镜与扫描电子显微镜到底有何区别?

扫描探针显微镜与扫描电子显微镜都是显微镜,但他们的功能和用途不同,工作原理也不一样。当然了,价格上也是不一样的,扫描电子显微镜要贵得多。 1、功能 扫描探针显微镜具有极高的分辨率。它可以轻易的“看到”原子,这是一般显微镜甚至电子显微镜所难以达到的。扫描探针显微镜得到的是实时的、真实的样品表面的高分辨

场发射扫描电子显微镜与普通扫描电镜相比有哪些区别

二次电子象分辨率:1.5nm 加速电压:0~30kV 放大倍数:10-50万倍连续可调工作距离:5~连续可调倾斜:-5°~45° x射线能谱仪: 分辨率:133eV 分析范围:B-U     附件信息:  镀金镀炭仪 ISIS图像处理系统背散射探头     场发射,由于分辨率高,为的研究提供了可

扫描电子显微镜对化妆品的研究和开发

自古埃及时代以来,化妆品已被用于美化人们的容貌。 因此对化妆品的研究不仅涉及新产品的开发,现有产品的分析和提升,还涉及产品组分与组织的相互作用。 在这篇博客中,将介绍三个关于化妆品行业研究与扫描电镜(SEM)之间的例子。 研究氧化铜纳米材料对不同上皮细胞的毒性 因为纳米颗粒存在潜在毒性,在化妆品的使

扫描电子显微镜一种有效的淀粉研究手段

扫描电子显微镜(Scanning Electron Microscope)简称扫描电镜或SEM,是利用聚焦电子束在试样上扫描时,激发的某些物理信号来调整一个同步扫描的显像管在相应位置的亮度而成像的一种显微镜。 扫描电镜由电子光学系统(电子枪、电磁透镜、扫描线圈、消像散器、光圈、试样室),信号收集及显

扫描电子显微镜对化妆品的研究和开发

自古埃及时代以来,化妆品已被用于美化人们的容貌。 因此对化妆品的研究不仅涉及新产品的开发,现有产品的分析和提升,还涉及产品组分与组织的相互作用。 在这篇博客中,将介绍三个关于化妆品行业研究与扫描电镜(SEM)之间的例子。 研究氧化铜纳米材料对不同上皮细胞的毒性 因为纳米颗粒存在潜在毒性,在化妆品的使

台式扫描电子显微镜行业趋向于多元化发展

  台式扫描电子显微镜行业趋向于多元化发展     台式扫描电子显微镜是电子显微镜的一种,该仪器具有超高分辨率,能做各种固态样品表面形貌的二次电子像、反射电子象观察及图像处理。   该仪器利用二次电子成像原理,在镀膜或不镀膜的基础上,低电压下通过在纳米尺度上观察生物样品如组织、细胞、微生物以及生物大

扫描电子显微镜与金相显微镜的几点不同

在材料分析试验中我们经常会用到扫描电镜和金相显微镜,这两种设备在使用中有何不同?天纵检测(SKYALBS)这里参考汇总了部分资料,分享给大家。金相显微镜(metallurgical microscope)是用入射照明来观察金属试样表面(金相组织)的显微镜,它是将光学显微镜技术、光电转换技术、计算机图

扫描电子显微镜的介绍

扫描电子显微镜(SEM)是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使

扫描电子显微镜的优点

和光学显微镜及透射电镜相比,扫描电镜具有以下特点:(一) 能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。(二) 样品制备过程简单,不用切成薄片。(三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。(四) 景深大,图象富有立体感。扫描电镜

扫描电子显微镜的简介

  扫描电子显微镜 (scanning electron microscope, SEM) 是一种用于高分辨率微区形貌分析的大型精密仪器 [3] 。具有景深大、分辨率高, 成像直观、立体感强、放大倍数范围宽以及待测样品可在三维空间内进行旋转和倾斜等特点。另外具有可测样品种类丰富, 几乎不损伤和污染原

扫描电子显微镜的特点

 扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电子显微镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电子显微镜。近数十年来,扫描电

扫描电子显微镜的特点

  扫描电镜虽然是显微镜家族中的后起之秀, 但由于其本身具有许多独特的优点, 发展速度是很快的。 [7]  1 仪器分辨率较高, 通过二次电子像能够观察试样表面6nm左右的细节, 采用LaB6电子枪, 可以进一步提高到3nm。 [7]  2 仪器放大倍数变化范围大, 且能连续可调。因此可以根据需要选

扫描电子显微镜的优点

和光学显微镜及透射电镜相比,扫描电镜具有以下特点:(一) 能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。(二) 样品制备过程简单,不用切成薄片。(三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。(四) 景深大,图象富有立体感。扫描电镜

扫描电子显微镜的类型

  扫描电子显微镜类型多样, 不同类型的扫描电子显微镜存在性能上的差异。根据电子枪种类可分为三种:场发射电子枪、钨丝枪和六硼化镧 [5] 。其中, 场发射扫描电子显微镜根据光源性能可分为冷场发射扫描电子显微镜和热场发射扫描电子显微镜。冷场发射扫描电子显微镜对真空条件要求高, 束流不稳定, 发射体使用

扫描探针显微镜与扫描电子显微镜四个主要区别

扫描探针显微镜,扫描电子显微镜,两者虽然只相差两个字,但是却是完全不同的两种设备,当然,其价格也是不一样的,那这两者具体都有哪些差异呢?  1、从功能上看:和传统的显微镜相比,扫描探针显微镜具有极高的分辨率,可以轻易的看到原子,且它所得到的是实时的、真实的样品表面的高分辨率图像,从使用环境上来看,扫

扫描电镜的发展

  1873年解像力和照射光的波长成反比的理论以及1897年电子的发现都为挂技术的诞生提供了有力的支持。1924年电子本身具有波动的物理特性的提出,为电子显微镜提供了有力的理论支持。1926年电子可像光线一样可通过玻璃透镜发生偏折的理论被提出,而在1931年那穿透式电子显微镜的原型机诞生。这些都为扫

脑钠肽的研究与发展

BNP与血流动力学改变之间的关系已得到广泛的认同,BNP血浆浓度与心功能状态密切相关,正常BNP浓度可以在很大程度上否定存在心功能受损。大量的研究已经表明,BNP同可以用于诊断多种疾病引起的的LVD。但是,由于不同实验室条件不同,采取的测定方法和研究方法不尽相同,所得到的正常值均有差别,还需研究完善

纳米柱的研究与发展历史

2006年,内布拉斯加-林肯大学和劳伦斯·利弗莫尔国家实验室的研究者发展了一种便宜和较高效率产生纳米柱的方法。他们用纳米球光刻和反应离子腐蚀相结合产生直径小于500nm的大群硅柱。后于2010年研究者制出锥形头的纳米柱。之前,纳米柱的头是平的,把射到的光反射了很多。锥形头的纳米柱允许光

青蒿素的研究与发展

疟疾是人类最古老的疾病之一,迄今依然还是一个全球广泛关注且亟待解决的重要公共卫生问题。1631年,意大利传教士萨鲁布里诺(AgostinoSalumbrino)从南美洲秘鲁人那里获得了一种有效治疗热病的药物——金鸡纳树皮(cinchonabark)并将之带回欧洲用于热病治疗,不久人们发现该药对间歇热

水准仪的研究与发展

水准仪是在17~18世纪发明了望远镜和水准器后出现的。20世纪初,在制出内调焦望远镜和符合水准器的基础上生产出微倾水准仪。20世纪50年代初出现了自动安平水准仪;60年代研制出激光水准仪;90年代出现电子水准仪或数字水准仪。

手性技术的研究与发展情况

手性技术是建立在科学基础之上的。因此,手性技术的发展首先应该是有关基础的发展。这些基础首先是有机立体化学理论的建立,其次是消旋体拆分方法的完善,第三是手性合成的创新,另外还有其他一些相关的研究。消旋体的拆分,是手性技术的一个重要方面。在由非手性物质合成手性物质时,往往得到的是由一对等量对映异构体组成

氧化还原反应的研究与发展

应具有一些相似特征,提出了氧化还原反应的概念:与氧化合的反应,称为氧化反应;从含氧化合物中夺取氧的反应,称为还原反应。随着化学的发展,人们发现许多反应与经典定义上的氧化还原反应有类似特征,19世纪发展化合价的概念后,化合价升高的一类反应并入氧化反应,化合价降低的一类反应并入还原反应。20世纪初,成键

DNA测序技术的研究与发展

70年代末,WalterGilbert发明化学法、FrederickSanger发明双脱氧终止法手动测序,同位素标记80年代中期,出现自动测序仪(应用双脱氧终止法原理)、荧光代替同位素,计算机图象识别90年代中期,测序仪重大改进、集束化的毛细管电泳代替凝胶电泳2001年完成人类基因组框架图

扫描电子显微镜用途

最基本的功能是对各种固体样品表面进行高分辨形貌观察。大景深图像是扫描电子显微镜观察的特色,例如:生物学,植物学,地质学,冶金学等等。观察可以是一个样品的表面,也可以是一个切开的面,或是一个断面。冶金学家已兴奋地直接看到原始的或磨损的表面。可以很方便地研究氧化物表面,晶体的生长或腐蚀的缺陷。它一方面可