红外光谱区的范围是多少
红外光:大于760NM,可见光波长:400-760NM,紫外光波长:400NM以下.红外线的波长范围:把能通过大气的三个波段划分为:近红外波段1~3微米中红外波段3~5微米远红外波段8~14微米根据红外光谱划分为:近红外波段1~3微米中红外波段3~40微米远红外波段40~1000微米医学领域中常常如此划分:近红外区0.76~3微米中红外区3~30微米远红外区30~1000微米医用红外线可分为两类:近红外线与远红外线。近红外线或称短波红外线,波长0.76~1.5微米,穿入人体组织较深,约5~10毫米;远红外线或称长波红外线,波长1.5~400微米,多被表层皮肤吸收,穿透组织深度小于2毫米。(但在实际应用中通常把2.5微波以上的红外线通称为远红外线。)......阅读全文
红外光谱实验技术
红外光谱实验技术一. 实验目的1. 掌握固体和液体样品的常规制样方法2. 了解傅里叶变换红外光谱仪的工作原理和使用方法3. 了解ATR光谱附件的工作原理并掌握其使用方法 二. 实验内容1.固体样品的制备方法:压片法将固体样品与金属卤化物(KBr)按适当比例混合,于玛瑙研钵中快速研磨成极细的粉末(~2
烯烃红外光谱特征
烯烃分子有三类特征吸收峰(ν=C-H、νC=C、δ=C-H) 1、ν=C-H (包括苯环的C-H、环丙烷的C-H)在3000cm-1以上,苯出现在3010-3100cm-1的范围内,在甲基及亚甲基伸缩振动大峰左侧出现一个小峰,这是识别不饱和化合物的一个有效特征吸收。 2、νC=C 孤立
中红外区的特征区是指
4000~200范围内的波数。中红外光谱是物质的在中红外区的吸收光谱。在环境监测中,中红外光谱主要用于有机污染的监测,中红外区的特征区是指4000~200范围内的波数。波数:原子、分子和原子核的光谱学中的频率单位。符号为σ或v。等于真实频率除以光速,即波长的倒数,或在光的传播方向上每单位长度内的光波
红外光谱分析法红外光谱产生的条件
1. 红外光的频率与分子中某基团振动频率一致;2. 分子振动引起瞬间偶极矩变化完全对称分子,没有偶极矩变化,辐射不能引起共振,无红外活性, 如:N2 、 O2 、 等;非对称分子有偶极矩,属红外活性,如 HCl。
近红外光谱仪的近红外光谱分析原理
近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波, ASTM 定义的近红外光谱区的波长范围为 780~2526nm (12820~3959cm1),习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两
微区拉曼光谱仪
微区拉曼光谱仪是一种用于材料科学领域的分析仪器,于2003年11月8日启用 技术指标 配有双激光器:514nm和785nm; 拉曼位移范围:50~4000cm-1; 显微尺寸范围:0.1微米*0.1微米; 光谱分辨率:1cm-1。 主要功能 拉曼光谱和红外光谱相配合可全面地研究分子运动状
红外光谱仪理论
电磁光谱的红外部分根据其同可见光谱的关系,可分为近红外光、中红外光和远红外光。 远红外光(大约400-10 cm-1)同微波毗邻,能量低,可以用于旋转光谱学。中红外光(大约4000-400 cm-1)可以用来研究基础震动和相关的旋转-震动结构。更高能量的近红外光(14000-4000 cm-
红外光谱仪特点
特点编辑1、 只需三个分束器即可覆盖从紫外到远红外的区段;2、 ZL干涉仪,连续动态调整,稳定性极高;3、 可实现LC/FTIR、TGA/FTIR、GC/FTIR等技术联用;4、 智能附件即插即用,自动识别,仪器参数自动调整;5、 光学台一体化设计,主部件对针定位,无需调整。
红外光谱仪应用
应用于染织工业、环境科学、煤结构研究、石油工业、日用化工等研究领域。当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。使用红外光谱仪对材料进行定性分析,广泛应用于各大、专院校,科研院所及厂矿企业。
红外光谱法概述
19世纪初人们通过实验证实了红外光的存在。二十世纪初人们进一步系统地了解了不同官能团具有不同红外吸收频率这一事实。1950年以后出现了自动记录式红外分光光度计。随着计算机科学的进步,1970年以后出现了傅立叶变换型红外光谱仪。红外测定技术如全反射红外、显微红外、光声光谱以及色谱-红外联用等也不断发展
顺反异构的红外光谱
有机化合物的红外光谱对于鉴别某种官能团的存在与否是相当有力的,而标志某官能团的特征吸收又与化合物的构造有着密切的联系,在有些场合,构造的差别甚至会使某一特征吸收消失。
红外光谱制样技术
红外光谱仪已经成为了目前实验室的重要分析仪器之一,每年分析的样品也数不胜数。 这些样品范围从商业产品像高聚物颗粒和液体表面活性剂,一直到高纯度有机化合物。而为了从这些不同的材料中得到高质量的红外谱图,制样技术也不尽相同。这里小编就红外光谱仪的制样和大家做个简单的讨论。 液体 液样的制
红外光谱仪定义
红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过
红外光谱制样技术
红外光谱的样品制备 – *部分 每年各地红外光谱的实验室制备和利用红外光谱仪分析成千上万个样品。 这些样品范围从商业产品像高聚物颗粒和液体表面活性剂,一直到高纯度有机化合物。为了从这些不同的材料中得到高质量的红外谱图,我们必须采用多种多样的制样技术。这篇文章的旨在与您交流红外制样技术。在这篇文
红外光谱的表示方法
红外光谱法 1.物质吸收红外光的必要条件 ①分子的振动必须能与红外辐射产生耦合作用,即分子振动时必须伴随瞬时偶极矩的变化。②只有当照射分子的红外辐射光子的能量与分子振动能级跃迁所需的能量相等,才能实现振动与辐射的耦合,从而使分子吸收红外辐射能量产生振动能级的跃迁。即 △Ev=Ev2-Ev1=h
近红外光谱仪
NIR-900近红外光谱仪的详细资料: 商品名称: NIR-900近红外光谱仪商品描述 扩展属性 商品描述:仪器简介NIR-900近红外光谱仪是最新引进的美国CONTROL DEVELOPMENT公司的新产品,它采用制冷型高性能铟镓砷阵列探测器,高性能光纤附件,在几秒内就可得到全波段光谱,是在线检测
红外光谱仪应用
应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根
红外光谱仪环境
配置高品质的荧光分光光度计的红外光谱仪目前在多个领域被广泛运用,但是红外光谱仪对运用的环境区域有特定的要求,如:温湿度的控制、环境的潮湿程度以及室内的二氧化程度等方面都有所需求。既然如此,用户在使用过程中要如何运用红外光谱仪才得以延长仪器的寿命呢?建议如下: 使用红外光谱仪的注意事项 一、注
红外光谱仪分类
一般分为两类,一种是光栅扫描的,很少使用;另一种是迈克尔逊干涉仪扫描的,称为傅立叶变换红外光谱,这是目前最广泛使用的。 光栅扫描的是利用分光镜将检测光(红外光)分成两束,一束作为参考光,一束作为探测光照射样品,再利用光栅和单色仪将红外光的波长分开,扫描并检测逐个波长的强度,最后整合成一张谱图。
红外光谱表示方法
(1)红外光谱图 红外光谱图以透光率T %为纵坐标,表示吸收强度,以波长l ( mm) 或波数 s (cm-1)为横坐标,表示吸收峰的位置,现主要以波数作横坐标。波数是频率的一种表示方法(表示每厘米长的光波中波的数目)。通过吸收峰的位置、相对强度及峰的形状提供化合物结构信息,其中以吸收峰的位
KBr压片法红外光谱
KBr压片法广泛用于红外定性分析和结构分析,通过称量压片质量也可方便的用于常量组分的定量分析。制备KBr压片时,应取约2mg样品研磨,然后与100~200mg干燥KBr粉末充分混合,并再次用球磨机研磨1~2min,研磨时间将对最终的光谱外观有显著影响。再转入合适的模具中,使之分布均匀,抽空下压成透明
红外吸收光谱的原理
分子运动有平动,转动,振动和电子运动四种,其中后三种为量子运动。分子从较低的能级E1,吸收一个能量为hv的光子,可以跃迁到较高的能级E2,整个运动过程满足能量守恒定律E2-E1=hv。能级之间相差越小,分子所吸收的光的频率越低,波长越长。 红外吸收光谱是由分子振动和转动跃迁所引起的, 组成
KBr压片法红外光谱
KBr压片法广泛用于红外定性分析和结构分析,通过称量压片质量也可方便的用于常量组分的定量分析。制备KBr压片时,应取约2mg样品研磨,然后与100~200mg干燥KBr粉末充分混合,并再次用球磨机研磨1~2min,研磨时间将对最终的光谱外观有显著影响。再转入合适的模具中,使之分布均匀,抽空下压成透明
红外光谱图怎么分析
红外光谱图分析步骤:1,根据分子式计算不饱和度公式:不饱和度 Ω=n4+1+(n3-n1)/2 其中:n4:化合价为4价的原子个数(主要是C原子), n3:化合价为3价的原子个数(主要是N原子), n1:化合价为1价的原子个数(主要是H,X原子)。2,分析3300~2800cm-1区域C-H伸缩振动
红外光谱图怎么分析
红外光谱分析用来研究分子的结构还有化学键,也可以作为表征以及鉴别化学物种的方法。它的高度特征性,分析鉴定还需要图谱。图谱的纵坐标是吸收强度,也可用峰数,峰位,峰形,峰强来进行描述。纵坐标也表示百分透过率T%。上方的横坐标是波长λ,它的单位μm;下方的横坐标是波数(用来表示波数大,频率也大)。可根据峰
红外光谱图怎么分析
你不能指望就一张红外光谱图就能分析出是什么物质。 红外光谱测的是透射光,纵坐标为吸光度值,给人的感觉是反的(你要理解本质的意思)。 了解基频区,和指纹区。 根据化学手册上各种基团的红外光谱范围,判断大概是什么物质。一般做红外光谱检测时,首先知道大概生成的物质都带有什么基团,能避免很多不必要的猜测。依
怎么分析红外光谱图
问题一:怎么看红外光谱图? (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),(2)分析3300~2800cm
红外光谱的样品制备
第一部分液体液样的制备是将少量样品涂于两片红外透明的窗片(KBr、NaCl等)之间。窗片的互相挤压形成一个样品薄层,样品的成分决定了选择哪种窗片。对于无水的样品,窗片材料是KBr。对于含水样品, KRS-5 较为适合。固体固体样品对光谱学家提出挑战。样品的熔点为我们指出首先该考虑哪种技术。对于熔点低
红外光谱图谱记忆口诀
红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。 2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。 二个甲基
红外光谱常见疑问解读
自1940年商品红外光谱仪问世以来,在有机化学研究中得到广泛的应用。到70年代,傅立叶变换红外光谱 (FTIR) 实验技术进入现代化学家的实验室,成为结构分析的重要工具。它以高灵敏度、高分辨率、快速扫描、联机操作和高度计算机化的全新面貌使经典的红外光谱技术再获新生。 红外光谱作为结构分析的重要