吸收光谱是什么
发光的气体和蒸气吸收它们自己放射的颜色。除了发光体的光引起的发射光谱外,还有吸收光谱。光通过发光的气体和蒸气时,就产生了吸收光谱。这时,吸收光谱在某种程度上就是发射光谱的“反面”。吸收光谱中属于某一元素的暗线所处的位置,恰好是没有吸收时发射光谱的明线所处的位置。......阅读全文
原子吸收光谱的概念
原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。
分子吸收光谱的产生
分子中包含有 原子和电子,分子、原子、电子都是运动着的物质,都具有能量,且 都是量子化的。在一定的条件下,分子处于一定的运动状态,物质分子内部运动状态有三种形式:①电子运动:电子绕原子核作相对运动;②原子运动:分子中原子或原子团在其平衡位置上作相对振动;③分子转动:整个分子绕其重心作旋转运动。所以:
紫外吸收光谱的产生
紫外吸收光谱的产生同核双原子分子的分子轨道能级图吸光物质分子吸收特定能量(波长)的电磁波(紫外光)产生分子的电子能级跃迁。
原子吸收光谱法
用原子吸收光谱法测定铜,干扰少,方法灵敏、快速、简便,特别适用于低含量铜的测定。当试样中铜含量很低时,也可用APDC-MIBK、CHCl3或乙酸乙酯萃取,将铜富集于有机相中,直接在有机相中进行铜的测定。本法适用于0.001%~5%铜的测定,采用萃取有机相可测定0.1×10-6铜。方法提要试样经盐酸、
原子吸收光谱的测量
(1)积分吸收(Kν)在吸收线轮廓内,吸收系数的积分称为积分吸收系数,简称为积分吸收,它表示吸收的全部能量。从理论上可以得出,积分吸收与原子蒸气中吸收辐射的原子数成正比。数学表达式为现代岩矿分析实验教程式中:e为电子电荷;m为电子质量;c为光速;N0为单位体积内基态原子数;f为振子强度,即能被入射辐
紫外吸收光谱的原理
紫外吸收光谱的原理是光在与物质作用时,物质可对光产生不同程度的吸收。我们利用测量物质对某些波长的光的吸收来了解物质的特性,这就是吸收光谱法的基础。物质的结构决定了物质在吸收光时只能吸收某些特定波长的吸收,也就是说,物质对光的吸收是具有选择性的。通过测量物质对不同波长的吸收程度(吸光度),以波长为横坐
紫外可见吸收光谱原理
紫外可见吸收光谱原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π
红外吸收光谱的原理
分子运动有平动,转动,振动和电子运动四种,其中后三种为量子运动。分子从较低的能级E1,吸收一个能量为hv的光子,可以跃迁到较高的能级E2,整个运动过程满足能量守恒定律E2-E1=hv。能级之间相差越小,分子所吸收的光的频率越低,波长越长。 红外吸收光谱是由分子振动和转动跃迁所引起的, 组成
原子吸收光谱技术应用
1、在金属材料中的分析应用 在对一些金属材料例如铝、铝合金、铜合金、钛合金等等,一些电源材料例如银锌电池、铬镍电池、热电池、太阳电池等,这些材料运用原子吸收光谱仪的技术方法所测的实验数据普遍具有较高的准确度,实现了实验条件的优化与完善。 2、在粉末材料中的分析应用 在分析与测试微量与常量的
苯蒸气的吸收光谱
苯蒸气作为紫外可见分光光度计的分辨率检验标准物质, 早已被淘汰, 因为苯蒸气评定紫外可见分光光度计的分辨率只能给出相对值, 不像光谱带宽的表示方法, 能给出具体测试值, 且苯对人体的危害很大, 特别是对人体的肝脏影响很大。其吸收光谱见图10-3。
原子吸收光谱法
一、内容概述原子吸收光谱法(AAS)又称为原子吸收分光光度法,基本原理是每种元素都有其特征的光谱线,当光源发射的某一特征波长的光通过待测样品的原子蒸气时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使光源发出的入射光减弱,可以将特征谱线因吸收而减弱的程度用吸光度表示,吸光度与被测样品中
原子吸收光谱检测方法
1、氢化物发生法 氢化物发生法适用于容易产生阴离子的元素,如Se、Sn、Sb、As、Pb、Hg、Ge、Bi等。这些元素一般不采取火焰原子化法检测,而是用硼氢化钠处理,因为硼氢化钠具有还原性,可以将这些元素还原成为阴离子,与硼氢化钠中电离产生的氢离子结合成气态氢化物。 如土壤监测中运用流动注射
紫外吸收光谱的原理
紫外吸收光谱和可见吸收光谱都属于分子光谱,它们都是由于价电子的跃迁而产生的。利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。 在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能
吸收光谱分析
实验86 吸收光谱分析 光谱分析可以分为发射光谱分析和吸收光谱分析两大类。当构成物质的分子或原子受到激发而发光,产生的光谱称为发射光谱,发射光谱的谱线与组成物质的元素及其外围电子的结构有关。吸收光谱是指光通过物质被吸收后的光谱,吸收光谱则决定于物质的化学结构,与分子中的双键有关。各种物质
原子吸收光谱的简介
从1955年澳大利亚科学家A. Walsh(威尔茨)发表原子吸收光谱法(AAS)分析论文并设计出第一台AAS仪后,开创了火焰原子吸收光谱分析法(FAAS)。1959年,前苏联李沃夫创建石墨炉原子吸收法(GFAAS),在此基础上,1968年经过德国学者麦斯曼( H.MassMann)发展和改进,设计出
吸收光谱和标准曲线
在分光光度计上,利用不同波长的单色光作为入射光,按波长由短到长的顺序依次通过某一溶液,可测得不同波长时的吸光度A。然后以入射光的波长λ为横坐标,吸光度A为纵坐标作图(图4.3),所得曲线即为该溶液的吸收光谱(absorption spectrum),又称吸收曲线(absorption curve)。
原子吸收光谱技术应用
1、在金属材料中的分析应用 在对一些金属材料例如铝、铝合金、铜合金、钛合金等等,一些电源材料例如银锌电池、铬镍电池、热电池、太阳电池等,这些材料运用原子吸收光谱仪的技术方法所测的实验数据普遍具有较高的准确度,实现了实验条件的优化与完善。 2、在粉末材料中的分析应用 在分析与测试微量与常量的
原子吸收光谱全解
概述原子吸收光谱分析(Atomic Absorption Spectrometry, AAS)又称原子吸收分光光度分析。原子吸收光谱分析是基于试样蒸气相中被测元素的基态原子对由光源发出的该原子的特征性窄频辐射产生共振吸收,其吸光度在一定范围内与蒸气相中被测元素的基态原子浓度成正比,以此测定试样中该元
铁离子吸收光谱特征
铁离子的吸收光谱特征主要有紫外线、可见光和红外线三个部分。根据相关资料显示,在紫外线范围内,铁离子的最强吸收能量带在波长220-390nm范围。在可见光范围内,铁离子的吸收能量带在波长420-550nm范围。
紫外可见吸收光谱原理
1. 紫外可见吸收光谱产生的原理紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱
多功能原子吸收光谱仪与原子吸收光谱仪的差别
多功能原子吸收光谱仪应用范围: 原子吸收光谱仪广泛应用在医院、制药、钢铁、卫生防疫、金属冶炼业、地矿地质、化工、水质监测、食饮乳品、环保监测、质检、药检、农业、玩具、电子等各行业的分析化验。多功能原子吸收光谱仪 检测方法:原子吸收火焰法: 原子吸收火焰法(空气—乙炔)测定元素可检测到PPM级。
紫外可见吸收光谱与漫反射吸收光谱是一种仪器么
紫外可见漫反射吸收光谱,我也是刚看到你的提问才了解到的,然后查了一些资料,希望可以帮到你,区别主要有以下几点:1)测量原理:分光光度计测得是透过光;漫反射吸收光谱测的是反射光;2)测量目的:分光光度计,主要适用于测定物质浓度或透过率;而漫反射主要目的是测量物质表征,从而对物质成分进行分析。
多功能原子吸收光谱仪与原子吸收光谱仪的差别
多功能原子吸收光谱仪应用范围: 原子吸收光谱仪广泛应用在医院、制药、钢铁、卫生防疫、金属冶炼业、地矿地质、化工、水质监测、食饮乳品、环保监测、质检、药检、农业、玩具、电子等各行业的分析化验。多功能原子吸收光谱仪 检测方法:原子吸收火焰法: 原子吸收火焰法(空气—乙炔)测定元素可检测到PPM级。
原子吸收光谱的相关应用
原子吸收光谱是分析化学领域中一种极其重要的分析方法,已广泛用于冶金工业。吸收原子吸收光谱法是利用被测元素的基态原子特征辐射线的吸收程度进行定量分析的方法。既可进行某些常量组分测定,又能进行ppm、ppb级微量测定,可进行钢铁中低含量的Cr、Ni、Cu、Mn、Mo、Ca、Mg、Als、Cd、Pb、Ad
什么是吸收光谱学?
分子或原子团在各个波段均有特征吸收,主要表现为分子光谱所特有的带状吸收谱(见光谱)。广泛被采用的红外吸收光谱是由分子的同一电子态内不同振动和转动能级间的跃迁产生。红外吸收光谱主要用来研究分子的能级结构和分子结构,或进行分子的定性和定量分析等。对吸收光谱和发射光谱的研究常互为补充。
紫外吸收光谱原理是什么
紫外吸收光谱和可见吸收光谱都属于分子光谱,它们都是由于价电子的跃迁而产生的。利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。 紫外可见吸收光谱应用广泛,不仅可进行定量分析,还可利用吸收峰的特性进行定性分析和简单的结构分析,
紫外吸收光谱有何特征
紫外吸收光谱主要是反应了π电子,特别是共轭体系的π电子的跃迁,也有n电子(非键轨道)的跃迁,一般紫外分光计是200nm以上,所观察到的是π到π*,n到π*的跃迁,一些常见物质的最大吸收波长可以通过查表得到
原子吸收光谱仪简述
原子吸收光谱仪作为一种能够检测多种元素的化学仪器,现如今已经被广泛应用于化学实验、物理实验甚至是农学实验当中。同时,由于原子吸收光谱仪具有测定精确、灵敏度高等优点,因此作为地矿实验室的一种常用仪器,为地矿样品的元素测定提供科学准确的分析测定。原子吸收光谱仪的基本原理是仪器从光源辐射出具有待测元素特征
原子吸收光谱技术的优点
1、操作简单、便捷 与分光光度的分析方法相比,原子吸收仪分析有许多相似之处,二者的工作原理以及操作仪器的结构基本相同。站在长期从事化学分析工作的人员的角度来看,这种分析技术的操作相对简单、便捷,其操作要领易于掌握,无需专门的培训就可以直接投入使用。 2、原子吸收仪具有较强的抗干扰能力 由于
原子吸收光谱法原理
原子吸收光谱法(aas)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。a