Antpedia LOGO WIKI资讯

新型传感器可诊断神经退行性疾病

瑞士洛桑联邦理工学院(EPFL)研究人员在诊断帕金森病和阿尔茨海默病等神经退行性疾病(NDD)方面取得了重大进展。他们开发了一种名为“ImmunoSEIRA”的新型生物传感器,能够检测和识别与NDD相关的错误折叠的蛋白质生物标记物。 12日发表在《科学进展》杂志上的这项研究还利用了人工智能(AI)技术,使用神经网络来量化疾病的阶段和进展。为了创建这种先进的NDD生物标志物传感器,研究人员将蛋白质生物化学、光流变学、纳米技术和AI等多个学科和多种技术整合在一起。 ImmunoSEIRA传感器采用了表面增强红外吸收(SEIRA)光谱技术,使科学家能检测和分析与NDD相关的生物标志物的形式。该传感器配备了独特的免疫分析,就像分子探测器一样,能高精度地识别和捕获这些生物标志物。 ImmunoSEIRA的特点是采用金纳米棒阵列,带有可检测特定蛋白质的抗体,能够对极小样本中的目标生物标志物进行实时特异性捕获和结构分析。而AI算法的......阅读全文

压电生物传感器要点解析

  前言  压电生物传感器是一种将高灵敏的压电传感器与特异的生物反应结合在一起的新型生物分析方法,这一方法不需要任何标记,且仪器构造简单、操作方便,引起人们的浓厚兴趣,逐渐成为生物传感器领域中的一项研究热点。本文就压电免疫传感器及压电基因传感器在微生物、蛋白质及基因检测等方面的研究应用作一综述。压电

生物传感器的应用领域

  综述  生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术。因其具有选择性好、灵敏度高、分析速度快、成本低、在复杂的体系中进行在线连续监测,特别是它的高度自动化、微型化与集成化的特点,使其在近几十年获得蓬勃而迅速的发展。  在国民经济的各个部门如食品、制药、

有关生物传感器的功能简介

  感受:提取出动植物发挥感知作用的生物材料,包括:生物组织、微生物、细胞器、酶、抗体、抗原、核酸、DNA等。实现生物材料或类生物材料的批量生产,反复利用,降低检测的难度和成本。  观察:将生物材料感受到的持续、有规律的信息转换为人们可以理解的信息。  反应:将信息通过光学、压电、电化学、温度、电磁

关于生物传感器的技术特点

传感器是一种可以获取并处理信息的特殊装置,如人体的感觉器官就是一套完美的传感系统通过眼、耳、皮肤来感知外界的光、声、温度、压力等物理信息,通过鼻、舌感知气味和味道这样的化学刺激。而生物传感器是一类特殊的传感器,它以生物活性单元(如酶、抗体、核酸、细胞等)作为生物敏感单元,对目标测物具有高度选择性的检

生物传感器的历史沿革

  1967年S.J.乌普迪克等制出了第一个生物传感器 葡萄糖传感器。将 葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了 葡萄糖传感器。当改用其他的酶或微生物等固化膜,便可制得检测其对应物的其他传感器。固定感受膜的方法有直接化学结合法;高分子载体法;高分子

FLIM-FRET生物传感器介绍

荧光寿命成像(FLIM)与Förster共振能量转移(FRET)相结合,已被证明非常有利于生物医学研究中各种结构和细胞动态变化的研究。因为FRET信号强烈依赖于FRET配体和受体的距离,所以FRET允许监测分子相互作用。这允许研究分子的相互作用,如配体-受体复合物,蛋白质-蛋白质相互作用、效应蛋白与

生物传感器用于发酵工业方面

  在各种生物传感器中,微生物传感器具有成本低、设备简单、不受发酵液混浊程度的限制、可能消除发酵过程中干扰物质的干扰等特点。因此,在发酵工业中广泛地采用微生物传感器作为一种有效的测量工具。  ⑴原材料及代谢产物的测定  微生物传感器可用于测量发酵工业中的原材料(如糖蜜、乙酸等)和代谢产物(如头孢霉素

生物传感器的特点及分类

  技术特点  传感器是一种可以获取并 处理信息的特殊装置,如人体的感觉器官就是一套完美的传感系统通过 眼、 耳、 皮肤来感知外界的光、声、温度、压力等物理信息,通过 鼻、 舌感知气味和味道这样的化学刺激。而生物传感器是一类特殊的传感器,它以生物活性单元(如酶、抗体、核酸、细胞等)作为生物敏感单元,

生物传感器的结构及功能

  组成结构  生物传感器由 分子识别部分(敏感元件)和转换部分(换能器)构成:  以分子识别部分去识别被测目标,是可以引起某种物理变化或化学变化的主要功能元件。分子识别部分是生物传感器选择性测定的基础。  把生物活性表达的信号转换为电信号的物理或化学换能器(传感器)  各种生物传感器有以下共同的结

生物传感器的发展前景

  概述  随着 生物科学、信息科学和材料科学发展成果的推动,生物传感器技术飞速发展。但是,目前, 生物传感器的广泛应用仍面临着一些困难,今后一段时间里,生物传感器的研究工作将主要围绕选择活性强、 选择性高的生物传感元件;提高信号 检测器的使用寿命;提高信号转换器的使用寿命;生物响应的稳定性和生物传

生物传感器的发展前景

概述随着生物科学、信息科学和材料科学发展成果的推动,生物传感器技术飞速发展。但是,生物传感器的广泛应用仍面临着一些困难,今后一段时间里,生物传感器的研究工作将主要围绕选择活性强、选择性高的生物传感元件;提高信号检测器的使用寿命;提高信号转换器的使用寿命;生物响应的稳定性和生物传感器的微型化、便携式等

生物标志物的简介

“Biomarker” 这个词在用于生物医学领域之前,多见于地质学文献,曾被翻译成“生物标志化合物”,指的是地质材料中来自于活的生物体的一些有机化合物。上世纪六十年代,这一词汇开始出现在医学文献中。上世纪八十年代,它被正式地引入到生物医学领域。在生物医学领域,对它也曾有过不同的描述。2001年,

实验室分析方法--红外吸收光谱红外吸收峰的强度

分子振动时偶极矩的变化不仅决定了该分子能否吸收红外光产生红外光谱,而且还关系到吸收峰的强度。根据量子理论,红外吸收峰的强度与分子振动时偶极矩变化的平方成正比。因此,振动时偶极矩变化越大,吸收强度越强。而偶极矩变化大小主要取决于下列四种因素。 化学键两端连接的原子,若它们的电负性相差越大(极性越大),

红外吸收光谱的原理

   分子运动有平动,转动,振动和电子运动四种,其中后三种为量子运动。分子从较低的能级E1,吸收一个能量为hv的光子,可以跃迁到较高的能级E2,整个运动过程满足能量守恒定律E2-E1=hv。能级之间相差越小,分子所吸收的光的频率越低,波长越长。   红外吸收光谱是由分子振动和转动跃迁所引起的, 组成

双键的红外吸收峰位置

简单的方法是光谱的方法:1、红外光谱.双键吸收峰在1680-1610cm-1,三键吸收峰在2260-2100cm-1.2、核磁共振氢谱.双键碳原子上的氢化学位移在5-7ppm,三键碳原子上的氢化学位移在2-4ppm.3、核磁共振碳谱.双键碳化学位移约20ppm,三键碳化学位移约5ppm.如果用化学方

双键的红外吸收峰位置

简单的方法是光谱的方法:1、红外光谱.双键吸收峰在1680-1610cm-1,三键吸收峰在2260-2100cm-1.2、核磁共振氢谱.双键碳原子上的氢化学位移在5-7ppm,三键碳原子上的氢化学位移在2-4ppm.3、核磁共振碳谱.双键碳化学位移约20ppm,三键碳化学位移约5ppm.如果用化学方

羰基红外吸收峰常见位置

  利用红外吸收光谱进行有机化合物定性分析可分为两个方面:一是官能团定性分析,主要依据红外吸收光谱的特征频率来鉴别含有哪些官能团,以确定未知化合物的类别;二是结构分析,即利用红外吸收光谱提供的信息,结合未知物的各种性质和其它结构分析手段(如紫外吸收光谱、核磁共振波谱、质谱)提供的信息,来确定未知物的

羰基红外吸收峰有哪些

  羰基吸收峰是在1900-1600cm-1区域出现强的C=O伸缩吸收谱带,这个谱带由于其位置的相对恒、强度高、受干扰小,已成为红外光谱图中最容易辨别的谱带之一。此吸收峰最常出现在1755-1670cm-1,但不同类别的化合物 C=O 吸收峰也各不相同。  关于 C=O 化合物的红外吸收规律在前面已

羰基红外吸收峰有哪些

羰基吸收峰是在1900-1600cm-1区域出现强的C=O伸缩吸收谱带,这个谱带由于其位置的相对恒、强度高、受干扰小,已成为红外光谱图中最容易辨别的谱带之一。此吸收峰最常出现在1755-1670cm-1,但不同类别的化合物 C=O 吸收峰也各不相同。  关于 C=O 化合物的红外吸收规律在前面已叙述

新型传感器诊断神经退行性疾病

  瑞士洛桑联邦理工学院(EPFL)研究人员在诊断帕金森病和阿尔茨海默病等神经退行性疾病(NDD)方面取得了重大进展。他们开发了一种名为“ImmunoSEIRA”的新型生物传感器,能够检测和识别与NDD相关的错误折叠的蛋白质生物标记物。  12日发表在《科学进展》杂志上的这项研究还利用了人工智能(A

新生物传感器可观测细菌生长

  据美国物理学家组织网报道,美国密歇根大学的研究人员利用CD播放机的一些零部件,开发出一种不用显微镜就可以观测到细菌生长及其对药物敏感性的生物传感器。该研究发表在近期出版的《生物传感器和生物电子学》期刊上。   这种新型生物传感器也被称为异步磁珠旋转传感器(AMBR),其磁珠可在

美研制出超灵敏生物传感器

  据物理学家组织网8月28日报道,美国纽约大学理工学院的科研人员制成了超灵敏的生物传感器,能够识别出溶液中最小的单个RNA型病毒(核酸为RNA的一类病毒总称为RNA型病毒)颗粒。这项进展有望彻底改变早期疾病的检测模式,并将测试结果的等待时间从几周缩短至几分钟。相关研究报告发表在最新一期《应用物理快

废旧光盘的“重生”计划——生物传感器

由于电子产品寿命短暂,电子垃圾已经成为全球性问题。美国纽约州立大学宾厄姆顿大学的一项新研究给了废弃的光盘“第二次生命”——将它们变成廉价且易于制造的柔性生物传感器。近日发表在《自然·通讯》杂志的一篇论文中,研究人员展示了如何将金色光盘的薄金属层从坚硬的塑料中分离出来,制成传感器,以监测人类心脏和肌肉

美生物传感器可实时检测汗液

  Electrozyme是一家美国关注汗液数据分析的公司。该公司日前研制出一款内置生物传感器的腕带产品,它可以与用户的皮肤表面进行接触并能从其汗液中读取化学信息,然后展现出该用户的身体在剧烈运动后会出现怎样的反应。  据了解,该生物传感器能够快速分析汗液中的化学成分,然后提供关于水合作用、体液损失

许文涛:功能核酸生物传感器

  分析测试百科网讯 2020年9月22-23日,“第九届中国食品与农产品安全检测技术与质量控制国际论坛(简称 CFAS 2020)”在江苏南京召开。大会第二日围绕农兽药残留检测、快速检测、重金属及元素检测等食品安全话题展开交流。快速检测技术专题论坛邀请了暨南大学石磊教授、国家饲料质量监督检验中心(

微生物传感器测定BOD实验

实验方法原理 微生物传感器设备的组成:固定化的微生物细胞膜、电极、放大器和记录仪等。微生物传感器测定 BOD 的基本原理是,当被测量的水中存在可生物氧化的有机物时,固定化膜内的微生物由内源呼吸转而进行外源呼吸,由于耗氧因而使固定化膜周围的氧分压下降,从而改变氧电极输出电流的强度,电流强度随

新型生物传感器检测浓度极低细菌

一种新型碳纳米管传感器能够快速、便捷的检测极低浓度的微生物,结果也很可靠。  该生物传感器由西班牙Rovira i Virgili大学研究人员开发,通过与核苷识体结合检测超低浓度的细菌。电化学测试解决方案通过携带特定细菌核苷识体的碳纳米管与特定位点相结合来完成。  当使用新的生物传感器,携带特定的伤

微生物传感器测定BOD实验

环境保护中,评价水质有机物污染和污水处理效率的重要指标 BOD(biochemical oxygen demand),即生物化学需氧量,标准稀释法(BOD5)测定要 5 d,费时费事,十分不便,用微生物传感器测定 15 min 便能完成,快速,简易。实验方法原理微生物传感器设备的组成:固定化的微生物

生物传感器的主要功能

  生物传感器由 分子识别部分(敏感元件)和转换部分(换能器)构成:  以分子识别部分去识别被测目标,是可以引起某种物理变化或化学变化的主要功能元件。分子识别部分是生物传感器选择性测定的基础。  把生物活性表达的信号转换为电信号的物理或化学换能器(传感器)  各种生物传感器有以下共同的结构:包括一种

概述生物传感器的应用领域

  生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术。因其具有选择性好、灵敏度高、分析速度快、成本低、在复杂的体系中进行在线连续监测,特别是它的高度自动化、微型化与集成化的特点,使其在近几十年获得蓬勃而迅速的发展。  在国民经济的各个部门如食品、制药、化工、临床