纳米纤维素“植物生物学最重要的发现之一”
纳米纤维素比凯夫拉芳纶更坚固,比纸更薄,而且再过几年,它有可能仅通过水和阳光就能大规模制备。 本周,美国科学家公布了一种制备纳米纤维素的新方法,它很有可能是突破性的。纳米纤维素被称为“神奇材料”,树纤维中就含有这种物质,它可以应用于制造超薄显示器、轻薄防弹衣以及许多种不同的产品。 科学家使用的主要原材料是什么呢?藻类。 “植物生物学最重要的发现之一” 周日,在新奥尔良举行的美国化学学会(American Chemical Society)会议上,来自得克萨斯大学奥斯汀分校(University of Texas at Austin)的生物学教授R.马尔科姆·布朗博士(Dr. R. Malcolm Brown)展示了自己团队的研究成果,他宣称他们的制备工艺是迈向“植物生物学最重要发现之一”的一大步。 布朗研究成果的核心在于一种能够用于生产醋、康普茶和高纤椰果的菌族。在培养基中,这些细菌能够分泌......阅读全文
青岛能源所开发出新型功能化纳米细菌纤维素制备方法
纳米细菌纤维素(BC)是由微生物发酵生成的纤维素材料,具有独特的纳米多孔纤维结构,具有高结晶度、高比表面积、高聚合度、优良渗透性、高孔隙度、优良机械特性等众多优点。经过功能化的细菌纤维素在化学传感、生物成像、紫外屏蔽、油吸附、燃料电池、生物医用材料、离子检测、防伪标识等众多领域具有良好的应用前景
科研人员开发出新型纳米纤维素基载药包封结构
近日,中科院青岛生物能源与过程研究所研究员崔球带领的代谢物组学研究组和天津科技大学的相关科研人员合作,以水溶性广谱抗生素——盐酸四环素为模型药物,基于前期对CNF和聚多巴胺(PDA)复合材料对改善药物缓释和促进伤口修复的研究,构筑了一种新型的CNF基载药包封结构,该研究成果可实现对药物的智能可控
木质素粘合策略构建纳米纤维素基柔性智能驱动器
具有环境刺激响应性的柔性智能驱动器在机械、生物医药、传感器、人工肌肉和机器人等领域具有巨大的应用潜力。日前,中科院青岛生物能源与过程研究所代谢物组学研究组的研究人员,受松果球鳞片湿度响应性形变现象的启发,利用木质素粘合策略构建了一种新型的纳米纤维素基柔性智能驱动器。相关研究结果发表在Chem.
菌体的分离原理
菌种分离原理:就是用无菌操作的方法将所需要的菌从混杂的微生物群体中单独分离出来的过程。培养基与菌种分离是指从含有多种微生物的样品中获得纯种微生物的操作技术。菌种分离主要在培养皿上进行,常用的方法是稀释法和划线法。使用这两种方法的目的是微生物的一个个体通过繁殖,在固体培养基上长出肉眼能见的群体,然后根
美国利用“环境因素”提高生物燃料生产效率
日前,包括美日等国在内的多国政府均为生物燃料产业的发展提供了多项扶持措施。据悉,目前有31个国家确定了生物燃料调合标准,有19个国家和地区实施了燃料免税和生产补贴政策。 正当生物燃料的研发在全球如火如荼地进行时,科学家已计划通过改变原材料生长的“环境因素”,来提高生物燃料生产的效率,并降低
中国科大发展一种新型生物合成法制备纳米复合材料
中新网合肥1月27日电(记者吴兰)中国科学技术大学27日消息,该校俞书宏教授研究团队发展一种新型生物合成法,首次制备出系列宏观尺度功能纳米复合材料。 近日,《国家科学评论》在线发表了中国科大俞书宏教授研究团队这一最新研究成果。 纳米材料具有许多优异的性能,将纳米材料组装成宏观尺度体材料可实现
固态基底气溶胶生物合成功能纳米复合材料研制成功
如何将纳米材料组装成宏观尺度体材料并保持其纳米尺度的独特性能,是纳米材料获得实际应用的关键,也是目前面临的重要挑战之一。将纳米材料组装成宏观尺度体材料可实现许多新的且单个纳米颗粒所不具备的性质,如光学、磁学、电学及离子传导性能等。 近日,中国科学技术大学教授俞书宏领导的研究团队发展了一种通用的
污水处理中藻类的相关问题
一、藻类在污水处理中的应用 藻类是自养型生物,生长对废水中营养要求较低,可利用氮、磷等营养物质合成复杂的有机质。 藻类细胞具有富集金属的能力,对一些金属离子如Zn、Hg、Cd、Cu、U、Pb等金属离子的富集可达几千倍,并且由于其生长速度快,代谢迅速,吸附快,所以净化效率高。 污
固态基底气溶胶生物合成宏观尺度功能纳米复合材料面世
如何将纳米材料组装成宏观尺度体材料并保持其纳米尺度的独特性能,是纳米材料获得实际应用的关键,也是目前面临的重要挑战之一。将纳米材料组装成宏观尺度体材料可实现许多新的且单个纳米颗粒所不具备的性质,如光学、磁学、电学及离子传导性能等。 近日,中国科学技术大学教授俞书宏领导的研究团队发展了一种通用的
基于价廉的细菌纤维素的新型纳米纤维固体酸催化剂材料
由于具有安全、绿色、腐蚀性小、易于回收等诸多优点,固体酸催化剂(SACs)逐渐取代传统液体酸催化剂,在各类化工生产中发挥着重要作用。目前固体酸催化成为酸催化领域的重要研究方向,受到研究人员的广泛关注。传统的SACs存在酸密度低、稳定性差、成本较高及催化性能有待提高等缺点。近年来,研究人员相继开发
利用木质素粘合策略构建纳米纤维素基柔性智能驱动器
具有环境刺激响应性的柔性智能驱动器在机械、生物医药、传感器、人工肌肉和机器人等领域颇具应用潜力。中国科学院青岛生物能源与过程研究所代谢物组学研究组受到松果球鳞片湿度响应性形变现象的启发,利用木质素粘合策略,构建出新型的纳米纤维素基柔性智能驱动器。 为了实现快速和多重刺激响应,制备柔性驱动器的典
藻类生物燃料未来有望代替汽油
学术期刊《欧洲材料科学杂志》发表的一篇文章称,莫斯科物理技术研究院、莫斯科大学、斯科尔科沃科技研究院以及俄罗斯科学院一些研究所的研究人员,发现了单细胞藻类生物燃料的准确化学成分,这有助于使其生产更有效。 藻类比其他光合有机体获得生物物质要快几倍,因此,许多研究人员认为,藻类是代替汽油和其他燃料
美国俄亥俄州有毒藻类暴发
因伊利湖有毒藻类大爆发有毒藻类大爆发:美国俄亥俄州数十万人无水可用 美国俄亥俄州托雷多(Toledo)市内几十万居民最近因伊利湖有毒藻类大爆发面临“无水可用”的紧张局面。当地卫生部门提醒民众,自来水有毒,既不可饮用,也不能用来洗澡。俄亥俄州政府宣布托雷多进入紧急状态。 当地居民的饮用水主要来自
培养藻类制造生物燃料未来可期
据《日本经济新闻》最近报道,今年4月,总部位于日本川崎市的千岁实验室公司在马来西亚设立了全球规模最大的藻类培养设施,旨在利用二氧化碳生产生物燃料。该公司的目标是在用培养藻类制造生物燃料时,将其成本控制在能与化石燃料竞争的水平。 千岁实验室公司并非唯一对培养藻类制造生物燃料寄予厚望的公司,其志同
藻类培养与在线监测技术方案
藻类是自然界中非常重要的一大类生物类群,藻类尤其微藻种类繁多,生长方式独特,产物丰富多样,故而在能源、环保、医药、食品、水产养殖等很多领域具备巨大的应用潜力,是当今科研的热点,但因其特定的生理习性,使其对培养条件极为敏感,培养温度、光照、溶氧等等条件的变化都对藻类的生长繁殖有巨大的影响,因此优化藻类
藻类快速净化金属污染的水体
图1. 小型藻类的实验室规模无菌培养。 采用低成本的净化技术处理受污染的饮用水,对于发展中国家而言具有重大的意义,本文介绍了如何利用藻类完成这一任务。 根据亚洲发展银行估计,仅在亚洲就有大约七亿人缺少清洁的饮用水,而污染程度最为严重的是受(重)金属污染的水体,因此,研究一种低成
藻类植物光合强度测定
原理 藻类植物在光合作用中吸收CO2 ,放出氧气。测定盛藻容器水中的含氧量,即可计算出藻类植物的光合强度。 以Winkler氏法测水中溶解的氧,方法准确而且简单易行。甚至极谱测氧都需用此法校准。 本法是根据向定量的水中加入二氯化锰(MnCl2 )及氢氧化钠,二者反应产生氢氧化亚
悬浮藻类测量室有哪些优点?
测量过程自动化、智能化:提供高级设置,自动化控制测量环境和过程;文件管理便捷。 l BP用户自定义自动测量程序::使用Python语言或内置图形编程界面完成编程 l 提供pH传感器接入:适合通用的12mm直径pH电极 l 支持配气进气口,为样品提供各种需要的气体环境 l 实时数据图形输出
科学家实现藻类细胞微型机器人阵列化旋转
藻类细胞是一类在水中自由游动的微生物,长度通常为十微米至几十微米。从工程学的角度来看,藻类细胞如同一个个微型机器人,它具有感知和驱动能力,能够从周围液体环境中获取能量,并高效地将化学能转化为其鞭毛的机械能,推动细胞自由游动。藻类细胞在水中都是任意游动的,如何实现其机器人化运动及向外界做功是生物
经济学人:-生物燃料前景难测
经过长久的研究和探索,科学家们已经熟知如何将树木、灌木、种子、菌类、藻类和动物脂肪等有机物转化成生物燃料,为汽车、轮船甚至飞机提供动力。对于缺少化石燃料的国家来说,让生物燃料作为替代燃料可谓一举两得,既能提供动力,又能降低空气中的碳排放量。然而,令人沮丧的是,大批量生产生物燃料成本高昂,难与化石
纤维素酶能否酶解纤维素
成熟棉纤维的主要成分是纤维素,纤维素是天然高分子化合物,由葡萄糖分子按β-1,4糖苷键连接而成。棉纤维中大分子的排列比较复杂,纤维内某些区域由于大分子的横向吸引使大分子排列比较整齐密实,缝隙孔洞较少,这称为结晶区。相反,另一些区域大分子排列比较紊乱,堆砌比较疏松,其中有较多的缝隙孔洞,密度较低,这称
卿光焱团队制备基于光子纤维素纳米晶的柔性汗液传感器
近日,大连化物所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队设计并制备了一种用于汗液中钙离子传感的可持续、不溶性和手性光子纤维素纳米晶体贴片。该研究为纤维素纳米晶(CNC)的功能化研究提供了一种新思路。 在低碳循环经济的倡导下,CNC作为一种生物基材料被迅速地开发,
原核微生物蓝细菌的特征和结构介绍
(1)定义:具有复杂生活史的一属细菌,柔软,无坚硬的细胞壁,无鞭毛,包埋在坚韧程度不同的粘液层中,在固体表面或气-水交界面上能缓慢滑动,其生活史包括营养细胞阶段和休眠体(子实体)阶段。(2)结构特征:营养细胞发育到一定阶段,在适宜条件下,细胞聚集并形成由细胞和粘液组成的子实体,因种而形状各异。常具红
各个生物界细胞壁的差异
原核生物:真细菌的细胞壁成分为肽聚糖,而古菌的细胞壁不具肽聚糖,而是由假肽聚糖或多糖、糖蛋白、蛋白质所构成。真核生物:原生生物中,藻类具有纤维素的细胞壁,故据此特征,某些藻类被认为是植物的始祖。至于与真菌近似的原生生物,如水霉及有些黏菌的细胞壁含纤维素与甲壳素。真菌界的细胞壁含纤维素与甲壳素。植物界
苏州纳米所高通量微生物培养芯片研究取得进展
微生物已经在工业、农业、能源、环境、医药等诸多领域发挥着无可替代的作用。筛选获得优良的菌种是提升相关产业技术水平的重要途径。通常,微生物的液体培养筛选需要同时在数十上百个培养瓶或试管中进行。这使得整个筛选过程劳动强度大,效率较低。 最近,中科院苏州纳米技术与纳米仿生研究所国际实验室的甘明哲
nanoporetech-使用纳米孔测序技术的微生物学
完整的细菌,真菌和病毒(DNA或RNA)基因组,可进行长时间的纳米孔测序。通过快速的病原体检测方法(无论是在实验室还是在野外),从环境或单一生物样品中鉴定并鉴定微生物。如果需要,还应附有抗菌素耐药性分析。使用直接RNA或cDNA方法对全长转录本进行测序,以进行准确的基因表达和转录本亚型分析。 通过长
解析碳纳米材料在肠道微生物内的“前世今生”
原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500450.shtm近日,国家纳米科学中心研究员陈春英课题组在肠道微生物发酵人工合成碳纳米材料生成内源有机代谢产物方面取得重要进展。相关研究已在《美国国家科学院院刊》发表。 ?肠道微生物对碳纳
Nature:藻类基因组解读叶绿体秘史
我们初学生物时接触得最早的就是光合作用,光合作用利用二氧化碳、水和太阳能合成有机物。世界上最重要的光合作用真核生物(植物)多半并不是自己演化出光合作用能力的,它们的叶绿体是从其他生物中“拿来”的。 这些叶绿体来源于真核宿主吞食的光合细菌,这一过程被称为初级内共生。随后,红藻和绿藻中的叶绿体
某些藻类的增加可影响碳循环
两项新的研究报告了浮游植物丰度和性质发生的急剧变化,它们对储存过量的碳具有重要的含义。总的来说,这些研究提出,一些类型的碳密集型藻类正在繁盛地生长,它们将充当日益重要的碳泵的角色。应用深水软珊瑚骨骼中埋置的浮游植物氨基酸的同位素特征,Kelton McMahon和同事确定了在过去一千年里北太平洋
解析藻类智能辅助鉴定和计数系统
迅数Algacount藻类智能辅助鉴定和计数系统,是根据“水环境监测规范”和“近海污染生态调查和生物监测规范”所建立的“藻类分类图谱专家系统”。系统覆盖了中国七大水系、28个重点湖库的常见淡水藻,以及东海、黄海、渤海、南海周边的海洋藻。以精细、直观、实用的原则,对浮游藻简介进行重点编辑、分栏介绍