一文带你走过X射线荧光光谱30年历程

1 X射线荧光光谱分析的发展概述 20世纪80年代初期,商品X射线荧光光谱仪主要有波长色散X射线荧光光谱仪(WDXRF)、能量色散X射线荧光光谱仪(EDXRF)和以正比计数器为探测器的可携式X射线荧光光谱仪(PXRF)。WDXRF谱仪的送样系统和参数的设置已高度自动化,用户根据待分析试样的组成购买理论α系数表,用于校正基体中元素间的吸收增强效应,将测得的强度转为浓度,并获得与化学分析结果相当的准确度。因此,在1983年Kikkert认为XRF分析是一种成熟的分析方法。然而迄今30年来由于微电子学、计算机科学、核科学和材料学的迅猛发展,为XRF分析新的发展奠定了坚实的物质基础,同时又成为XRF分析学科的发展动力,其中微XRF分析、 全反射、用于现场分析和原位分析的可携式和手持式谱仪应运而生,呈现出逢勃发展的态势。即使WDXRF 分析,无论从谱仪本身还是分析方法的建立和应用,也己与30年前不可同日而语。 以2011年为例,W......阅读全文

气流筛的历史

  传统意义上的振动筛分设备是靠一定频次的电机振动来实现颗粒状物体通过筛网从而实现物料的分级的,由于是开放式筛分,物料筛分过程粉尘大,物料筛分过程中无形中造成浪费和损失,并导致自然环境和工作环境的极大污染。同时,振动筛分对物料有极大的要求,如比重、粘性、化学特性,又导致许多比重小的物料无法通过筛网,

分子识别的历史

自从1828年Friedrich Wöhler合成出尿素分子190年以来,分子化学已经发展到了前所未有的高度,尤其是在有机合成方面,人们利用精美的策略以及巧夺天工的效率和选择性,合成了大量结构复杂、功能多样的分子。而在1987年,Nobel化学奖授予了C.J.Pedersen、D.J.Cram和J.

核酶的研究历史

1982年,美国科学家T.Cech和他的同事在对“四膜虫编码rRNA前体的DNA序列含有间隔内含子序列”的研究中发现,自身剪接内含子的RNA具有催化功能,并因此获得了1989年诺贝尔化学奖。为了与酶(enzyme)区分,Cech将它命名为ribozyme,其中文译名“核酶”已得到大多数人的认可。因为

顺反异构发现历史

贝采里乌斯建议把相同组成而不同性质的物质称为“同分异构(isomerism)‘’的物质。同分异构现象的发现以及从理论上的阐明,是在物质组成和绪构理论发展中迈出的重要一步,它开始了分子结构问题的研究,促进了有机化学的发展。在发现了酒石酸的旋光异构之后,1874年9月荷兰物理化学家范特霍夫(Jacobu

糖酵解的历史

今天已知的糖酵解途径需要近100年的时间才能完全阐明。需要许多较小实验的综合结果才能从整体上理解该途径。了解糖酵解的xxx步始于19世纪的葡萄酒工业。出于经济原因,法国葡萄酒业试图调查为什么葡萄酒有时会变得令人讨厌,而不是发酵成酒精。法国科学家路易斯巴斯德在1850年代研究了这个问题,他的实验结果开

激光的研发历史

激光的理论基础起源于物理学家爱因斯坦,1917年爱因斯坦提出了一套全新的技术理论‘光与物质相互作用’。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状

钠的发展历史

  伏特在19世纪初发明了电池后,各国化学家纷纷利用电池分解水成功。英国化学家戴维坚持不懈地从事于利用电池分解各种物质的实验研究。他希望利用电池将苛性钾分解为氧气和一种未知的“基”,因为当时化学家们认为苛性碱是氧化物。他先用苛性钾(氢氧化钾)的饱和溶液实验,所得的结果却和电解水一样,只得到氢气和氧气

酶的研究历史

1773年,意大利科学家斯帕兰扎尼(L.Spallanzani,1729-1799)设计了一个巧妙的实验:将肉块放入小巧的金属笼中,然后让鹰吞下去。过一段时间他将小笼取出,发现肉块消失了。1833年,法国的佩恩(Payen)和帕索兹(Persoz)从麦芽的水解物中用酒精沉淀得到一种可使淀粉水解生成糖

原子吸收的历史

光谱仪器的产生:原子吸收光谱作为一种实用的分析方法是从1955年开始的。这一年澳大利亚的瓦尔什(A.Walsh)发表了他的著名论文‘原子吸收光谱在化学分析中的应用’奠定了原子吸收光谱法的基础。50年代末和60年代初,Hilger, Varian Techtron及Perkin-Elmer公司先后推出

次氯酸的历史

  次氯酸被认为是150年前的独特化学实体(科尔多瓦,1916年)。甚至在第一次世界大战之前广泛使用氯水作为创伤伤口的杀菌剂之前,其抗感染性能就得到了认可(Smith,Drennan,Rettie和Campbell,1915年),随后开发了其应用,用于环境卫生和坏疽的治疗用途,白喉和猩红热(Beat

通信的发展历史

1、19世纪中叶以后,随着电报、电话的发有,电磁波的发现,人类通信领域产生了根本性的巨大变革,实现了利用金属导线来传递信息,甚至通过电磁波来进行无线通信,使神话中的“顺风耳”、“千里眼”变成了现实。从此,人类的信息传递可以脱离常规的视听觉方式,用电信号作为新的载体,同此带来了一系列铁技术革新,开始了

心电图的发展历史

  1842 年法国科学家Mattencci 首先发现了心脏的电活动;1872年Muirhead记录到心脏波动的电信号。1885年荷兰生理学家W .Einthoven首次从体表记录到心电波形,当时是用毛细静电计,1910年改进成弦线电流计。由此开创了体表心电图记录的历史。1924年Einthoven

钾肥的生产历史

  自公元700年以来,碳酸钾(尤其是碳酸钾)一直被用于漂白纺织品、制造玻璃和制造肥皂 500.钾碱主要是通过沥滤陆地和海洋植物的灰烬获得的。从14世纪开始,埃塞俄比亚开始开采钾碱。世界上最大的矿藏之一,1.4到1.5亿吨,位于提格雷的达洛地区。[17] 碳酸钾是最重要的工业化学品之一。它是从阔叶树

鸦片的发展历史

  在瑞士发掘的公元前4000年新石器时代屋村遗址中,考古学家便发现了“鸦片罂粟”的种子和果实的遗迹,并且属于人工杂交种植的品种。到公元前3400年,如今伊拉克地盘的两河流域,人们已经大面积地种植这种作物了,而且给它以“快乐植物”的美名。至少在公元前2160年,鸦片已经成为兽医和妇科药品。  已经发

核酸的研究历史

  核酸的发现  1869年,F.Miescher从脓细胞中提取到一种富含磷元素的酸性化合物,因存在于细胞核中而将它命名为“核质”(nuclein)。但核酸(nucleic acids)这一名词在Miescher发现“核质”20年后才被正式启用,当时已能提取不含蛋白质的核酸制品。早期的研究仅将核酸看

色谱的研究历史

  1906年Tswett 研究植物色素分离时提出色谱法概念;他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。按光谱的命名方式,这种方法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”

核酶的发现历史

1967年,Carl Woese, Francis Crick和 Leslie Orgel 首次提出RNA可以作为催化剂,理由是RNA可以形成复杂的二级结构。1978年,耶鲁大学教授Sidney Altman正在研究细菌的tRNA分子的加工方式,他分离出一种叫做RNase P的酶,可以将前体tRNA

核酸的发现历史

核酸最早于1869年由瑞士医生和生物学家弗雷德里希·米歇尔分离获得,称为Nuclein  。在19世纪80年代早期,德国生物化学学家,1910年诺贝尔生理和医学奖获得者科塞尔进一步纯化获得核酸,发现了它的强酸性。他后来也确定了核碱基。1889年,德国病理学家Richard Altmann创造了核酸这

病毒的历史发现

  关于病毒所导致的疾病,早在公元前二至三个世纪的印度和中国就有了关于天花的记录。但直到19世纪末,病毒才开始逐渐得以发现和鉴定。1884年,法国微生物学家查理斯·尚柏朗(Charles Chamberland)发明了一种细菌无法滤过的过滤器(Chamberland氏烛形滤器,其滤孔孔径小于细菌的大

质膜的研究历史

1. E. Overton 1895发现凡是溶于脂肪的物质很容易透过植物的细胞膜,而不溶于脂肪的物质不易透过细胞膜,因此推测细胞膜由连续的脂类物质组成。2. E. Gorter & F. Grendel 1925用有机溶剂提取了人类红细胞质膜的脂类成分,将其铺展在水面,测出膜脂展开的面积二倍于细胞表

阿糖胞苷的研究历史

阿糖胞苷最早在1959年由加州大学伯克利分校的Richard Walwick、Walden Roberts和Charles Dekker合成。美国食品药品监督管理局在1969年6月批准阿糖胞苷进入市场。它最初由Upjohn公司以Cytosar-U的商品名出售这种药物的化学结构是胞嘧啶与阿拉伯糖结合成

核酶的发现历史

1982年,美国科学家T.Cech和他的同事在对"四膜虫编码rRNA前体的DNA序列含有间隔内含子序列"的研究中发现,自身剪接内含子的RNA具有催化功能,并因此获得了1989年诺贝尔化学奖。为了与酶(enzyme)区分,Cech将它命名为ribozyme,其中文译名"核酶"已得到大多数人的认可。因为

磷脂的研究历史

1812年,磷脂最早是由Uauquelin从人脑中发现。1844年,科学家Golbley从蛋黄中分离出来,并于1850年按照希腊文lekithos(蛋黄)命名为Lecithin(卵磷脂)。1861年,科学家Topler又从植物种子发现了磷脂的存在。1925年,科学家Leven将卵磷脂(磷脂酰胆碱)从

叶酸的研究历史

1931年,印度孟买产科医院的医生L.Wills等人发现,酵母或肝脏浓缩物对妊娠妇女的巨幼红细胞性贫血症状有一定的作用,认为这些提取物中有某种抗贫血因子;1935年,有人发现酵母和肝脏提取液对猴子贫血症状有一定的作用,描述其为VM;1939年,有人在肝中发现了抗击贫血的因子,称为VBe;1941年H

酶的研究历史

1773年,意大利科学家斯帕兰扎尼(L.Spallanzani,1729—1799)设计了一个巧妙的实验:将肉块放入小巧的金属笼中,然后让鹰吞下去。过一段时间他将小笼取出,发现肉块消失了。1833年,法国的佩恩(Payen)和帕索兹(Persoz)从麦芽的水解物中用酒精沉淀得到一种可使淀粉水解生成糖

离子的发展历史

  1887年,28岁的 阿仑尼乌斯在前人研究的  基础上提出了 电离理论。但他的导师,著名科学家 塔伦教授不认同他的观点,严厉抨击了他的论文,结果 电离学说在数年后才受到公认。阿仑尼乌斯荣获1903年 诺贝尔化学奖。后来物理学家 德拜对离子作了进一步研究并获得1936年 诺贝尔化学奖。 等离子态与

色谱的发展历史

色谱(chromatography)是一种分离的技术,随着现代化学技术的发展应运而生。20世纪初在俄国的波兰植物化学家茨维特(Twseet)首先将植物提取物放入装有碳酸钙的玻璃管中,植物提取液由于在碳酸钙中的流速不同分布不同,因此在玻璃管中呈现出不同的颜色,这样就可以对各种不同的植物提取液进行有效的

透镜的历史发展

  欧洲有关透镜的文字记载,最早出现在古希腊,在阿里斯托芬的戏剧云彩(纪元前424年)中就提到了烧玻璃(一种凸透镜,可以汇聚太阳光来点火);以《自然史》(Naturalis Historia)一书留名后世的古罗马作家、科学家,老普林尼(23年–79年)的文字叙述中也表示罗马帝国知道烧玻璃,并且提及矫

分子识别的历史

自从1828年Friedrich Wöhler合成出尿素分子190年以来,分子化学已经发展到了前所未有的高度,尤其是在有机合成方面,人们利用精美的策略以及巧夺天工的效率和选择性,合成了大量结构复杂、功能多样的分子。而在1987年,Nobel化学奖授予了C.J.Pedersen、D.J.Cram和J.

糖酵解的历史

今天已知的糖酵解途径需要近100年的时间才能完全阐明。需要许多较小实验的综合结果才能从整体上理解该途径。了解糖酵解的xxx步始于19世纪的葡萄酒工业。出于经济原因,法国葡萄酒业试图调查为什么葡萄酒有时会变得令人讨厌,而不是发酵成酒精。法国科学家路易斯巴斯德在1850年代研究了这个问题,他的实验结果开