研究揭示翻译调控型Tbox核糖开关折叠与识别tRNA耦联的结构与动态机制

T-box核糖开关是一类位于革兰氏阳性细菌mRNA的 5'非翻译区的结构元件。它的长度通常在300核苷酸以下,可分为适配体结构域和表达平台结构域。T-box核糖开关通过其适配体结构域识别和结合特定的tRNA,并感知其3'末端的氨酰化状态,引发下游RNA元件构象状态的转变,进而在翻译水平或转录水平调控下游基因的表达。与其他核糖开关一般通过识别小分子代谢物或离子调控基因表达的机制不同,T-box基因表达调控的功能主要通过两个高度结构化的RNA(T-box核糖开关和tRNA)之间的相互作用实现。近年来,多种T-box核糖开关与tRNA复合物的三维结构已被解析,但分子内的和分子间的RNA-RNA相互作用如何促进T-box核糖开关的折叠和结构转变进而形成特定构象状态以发挥生理功能的机制,仍不清楚。 11月15日,中国科学院生物物理研究所方显杨研究组与清华大学生命科学学院陈春来研究组合作,在《自然-通讯》(Nature......阅读全文

干细胞标和分化信号通路相关的基因介绍TBX3基因

这个基因是一个系统学保守的基因家族的成员,该家族共享一个共同的dna结合域t-box。t-box基因编码参与发育过程调控的转录因子。这种蛋白是一种转录抑制因子,被认为在四足动物前肢的前/后轴起作用。该基因突变导致尺乳综合征,影响肢体、大汗腺、牙齿、头发和生殖器发育。该基因的选择性剪接导致三个转录变体

TBX3基因的结构特点和生理作用

这个基因是一个系统学保守的基因家族的成员,该家族共享一个共同的dna结合域t-box。t-box基因编码参与发育过程调控的转录因子。这种蛋白是一种转录抑制因子,被认为在四足动物前肢的前/后轴起作用。该基因突变导致尺乳综合征,影响肢体、大汗腺、牙齿、头发和生殖器发育。该基因的选择性剪接导致三个转录变体

电子压力开关与普通的压力开关相比的特点

电子压力开关与普通的压力开关相比有如下特点:(1)采用了模型识别技术克服了现有压力开关的压力瞬间超低时,压力开关动作造成不正常 甩泵。(2)增加了流程选择开关,旁接罐流程、密闭流程可设置不同的阈值,旁接罐流程设置的阈 值可适当降低,从而解决了旁接罐流程压力开关不能投用的问题。(3)增设了校准按钮,在

Q开关的定义

Q开关(英文:Q-switching),也称巨脉冲发生器,是一种产生脉冲激光的技术。

Q开关的组成

Q开关的组成:Q开关元件主要由石英晶体,压电换能器,阻抗匹配元件,射频插头和壳体组成。

KOBOLD流量开关特点

KOBOLD流量开关分体型电磁流量计除可测量一般导电液体的流量外,还可测量液固两相流,高粘度液流及盐类、强酸、强碱液体的体积流量。一体型电磁流量计是根据法拉第电磁感应定律制定,用来测量导电流体的体积流量。由于独特的特点已广泛地应用于工业上各种导电液体的测量。主要用于化工、造纸、食品、纺织、冶金、环保

Q开关的类型

声光Q开关最常见的Q开关类型就是声光调制器。只要声波关闭,晶体或者玻璃片产生的透射损耗就非常小,但是声波打开后,会产生很强的布拉格反射,每次通过产生的损耗在50%左右,在线性激光谐振腔中通过两次会产生75%的损耗。为了产生声波,电子学驱动器需要功率在1W的射频功率(或者在大孔径器件中需要几个瓦特)和

限位开关结构分类

一,限位开关的作用-保护限位开关的作用中重要的一定就是其保护效果,限位开关也称行程限位开关,主要用于控制机械设备行程和进行限位保护。在实际运用中,行程限位开关安装于预先安排的位置,在装于生产机械运动部件模块撞击行程时,行程限位开关触点动作,实现电路之间切换。限位开关指就是一种根据运动部件行程位置进行

光纤用光开关参数

FOS-1-inlineFOS-2-inline波长范围 200-2500nm光纤接头2个SMA 905接头,包括2个COL-UV/VIS准直透镜4个SMA 905接头,包括4个COL-UV/VIS准直透镜滤光片槽 最宽5 mm快门频率 最大40 Hz快门延迟 10 ms快门衰减 60 dB材料 发

如何选择压力开关?

1、从工作用途来选择压力开关机械式压力开关有稳定、安全、长寿命和经济的特点;电子式压力开关是在压力变送器基础上发展起来的,融合电子技术和压力测量技术为一体,可提供的压力测量值、可调范围宽、灵敏度高,同时输出模拟量和开关信号。比如昌晖SWP-XEY100型压力变送控制器就是一种可带通讯的压力变送器+压

KOBOLD流量开关简介

KOBOLD流量开关可用于监控管道内流体流速大小、断流监测或防止泵的空转。广泛应用于各行业需要对管道内流体流速监控或在液体流量故障时保护重要设备的场合。 工作原理 热式流量开关是利用探测头温度变化的原理设计。在探头内置发热传感器及感热传感器,并与介质接触。测量时,发热传感器发出恒定的热量,当

Q开关的类型

声光Q开关最常见的Q开关类型就是声光调制器。只要声波关闭,晶体或者玻璃片产生的透射损耗就非常小,但是声波打开后,会产生很强的布拉格反射,每次通过产生的损耗在50%左右,在线性激光谐振腔中通过两次会产生75%的损耗。为了产生声波,电子学驱动器需要功率在1W的射频功率(或者在大孔径器件中需要几个瓦特)和

Q开关的定义

Q开关(英文:Q-switching),也称巨脉冲发生器,是一种产生脉冲激光的技术。

核糖核苷的功能特点

中文名称核糖核苷英文名称ribonucleoside定  义由除胸腺嘧啶(T)外的嘌呤或嘧啶与核糖分子共价结合而成的化合物。应用学科遗传学(一级学科),分子遗传学(二级学科)

核糖体的定义

核糖体是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle),主要由RNA(rRNA)和蛋白质构成,其功能是按照mRNA的指令将遗传密码转换成氨基酸序列并从氨基酸单体构建蛋白质聚合物。核糖体又被称为细胞内蛋白质合成的分子机器。

核糖体的结构

各种核糖体尽管大小差异很大,但它们的核心结构非常相似。大部分rRNA高度组织成各种三级结构基序。较大核糖体中额外的RNA都是以几个长的连续插入形式出现,使得它们在核心结构中形成环而不被破坏或改变 。核糖体的所有催化活性均由RNA进行,其表面的蛋白质可以稳定rRNA结构

核糖体的定义

核糖体是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle),主要由RNA(rRNA)和蛋白质构成,其功能是按照mRNA的指令将遗传密码转换成氨基酸序列并从氨基酸单体构建蛋白质聚合物。核糖体又被称为细胞内蛋白质合成的分子机器。

核糖体的结构

各种核糖体尽管大小差异很大,但它们的核心结构非常相似。大部分rRNA高度组织成各种三级结构基序。较大核糖体中额外的RNA都是以几个长的连续插入形式出现,使得它们在核心结构中形成环而不被破坏或改变。核糖体的所有催化活性均由RNA进行,其表面的蛋白质可以稳定rRNA结构 。

核糖体的组成

  核糖体是一种高度复杂的细胞机器。它主要由核糖体RNA(rRNA)及数十种不同的核糖体蛋白质(r-protein)组成(物种之间的确切数量略有不同)。核糖体蛋白和rRNA被排列成两个不同大小的核糖体亚基,通常称为核糖体的大小亚基。核糖体的大小亚基相互配合共同在蛋白质合成过程中将mRNA转化为多肽链

分化的核糖体

  通常认为核糖体只有原核和真核核糖体两种。但是,核糖体异质性令人惊讶,核糖体在不同物种中具有不同的组成。与主要模式生物中的典型核糖体相比,异质核糖体具有不同的结构,并因此具有不同的活性。  核糖体组成的异质性参与蛋白质合成的翻译控制[27]。不同细胞群特异的核糖体可以影响基因的翻译方式[28]。一

核糖的生理功能

D-核糖是生物体内遗传物质――核糖核酸(RNA)的重要组成物质,在核苷类物质、蛋白质、脂肪代谢中处于枢纽位置,具有重要的生理功能及广阔的应用前景。D-核糖作为生物体内存在于所有细胞中的天然成份,与腺苷酸的形成和三磷酸腺苷(ATP)的再生有密切关系,是生命代谢最基本的能量来源之一。

核糖体的结构

  各种核糖体尽管大小差异很大,但它们的核心结构非常相似。大部分rRNA高度组织成各种三级结构基序。较大核糖体中额外的RNA都是以几个长的连续插入形式出现,使得它们在核心结构中形成环而不被破坏或改变[5]。核糖体的所有催化活性均由RNA进行,其表面的蛋白质可以稳定rRNA结构[5]。

核糖体的分类

细菌核糖体细菌的核糖体70S核糖体由30S的小亚基和50S的大亚基组成。30S小亚基含有16S RNA(1540个核苷酸)和21种核糖体蛋白质;大亚基由5S RNA(120个核苷酸)、23S RNA(2900个核苷酸)及31个核糖体蛋白组成 。真核生物核糖体真核生物的核糖体80S 核糖体定位于其胞质

核糖核酸的功能

mRNAmRNA含A、U、G、C四种核苷酸,每三个相联而成一个三联体,即密码,代表一个氨基酸的信息,故按数学中排列组合法则计算,可形成43=64个不同的密码。根据实验结果,推得64个密码与氨基酸的对应关系如下表。mRNA密码与氨基酸的对应关系64个密码中,61个密码分别代表各种氨基酸。每种氨基酸少的

核糖体的分类

  细菌核糖体  细菌的核糖体70S核糖体由30S的小亚基和50S的大亚基组成。30S小亚基含有16S RNA(1540个核苷酸)和21种核糖体蛋白质;大亚基由5S RNA(120个核苷酸)、23S RNA(2900个核苷酸)及31个核糖体蛋白组成[5]。  真核生物核糖体  真核生物的核糖体80S

核糖核酸的概念

核糖核酸(缩写为RNA,即Ribonucleic Acid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、U(尿嘧啶),其中,U(尿

核糖体的组成

  核糖体是一种高度复杂的细胞机器。它主要由核糖体RNA(rRNA)及数十种不同的核糖体蛋白质(r-protein)组成(物种之间的确切数量略有不同)。核糖体蛋白和rRNA被排列成两个不同大小的核糖体亚基,通常称为核糖体的大小亚基。核糖体的大小亚基相互配合共同在蛋白质合成过程中将mRNA转化为多肽链

核糖体的结构

  各种核糖体尽管大小差异很大,但它们的核心结构非常相似。大部分rRNA高度组织成各种三级结构基序。较大核糖体中额外的RNA都是以几个长的连续插入形式出现,使得它们在核心结构中形成环而不被破坏或改变[5]。核糖体的所有催化活性均由RNA进行,其表面的蛋白质可以稳定rRNA结构[5]。

核糖体的起源

  核糖体可能最初起源于RNA,看起来像一个自我复制的复合体,只是有在氨基酸出现后才进化具有合成蛋白质的能力。将核糖体从古老的自我复制机器演变为其当前形式的翻译机器的驱动力可能是将蛋白质结合到核糖体的自我复制机制中的选择压力,这种转变增加了其自我复制的能力[26]。

核糖体的组成

  核糖体是一种高度复杂的细胞机器。它主要由核糖体RNA(rRNA)及数十种不同的核糖体蛋白质(r-protein)组成(物种之间的确切数量略有不同)。核糖体蛋白和rRNA被排列成两个不同大小的核糖体亚基,通常称为核糖体的大小亚基。核糖体的大小亚基相互配合共同在蛋白质合成过程中将mRNA转化为多肽链