直播预告|哈佛医学院教授LukeLee作报告
直播时间:2024年6月21日(周五)20:00-21:30直播平台:科学网APPhttps://weibo.com/l/wblive/p/show/1022:2321325047709349577279(科学网微博直播间链接)科学网微博科学网视频号北京时间2024年6月21日晚八点,iCANX Talks 第191期邀请到了哈佛医学院Luke P. Lee教授进行分享!此外,上海交通大学Xianting Ding,国家纳米科学中心Hai Wang,成均馆大学Miso Kim,北京大学Haixia Zhang等教授担任嘉宾,南方科技大学Xingyu Jiang教授担任主持人。这将是一场汇聚顶尖学者的盛会,共同探讨前沿科技与学术挑战!更多精彩,敬请期待!【嘉宾介绍】Luke P. Lee哈佛医学院Nanomedicine via SANDs, QBET, EXODUS, and Brain Organoid MAP【Abstrac......阅读全文
类器官的发展历程
1907年,Henry Van 发现物理分离的海绵细胞可以重现聚集,自行组成一个新的功能完善的海绵。在接下来的几十年里,脊椎动物中也发现了相似的细胞分离再聚合现象,例如1944年Holtfreter的两栖动物肾组织实验和1960年Weiss的禽类胚胎实验。1961年 Piercehe和 Verney
类器官的应用介绍
疾病研究:帮助理解疾病的发生机制,如肿瘤类器官用于研究癌症的发展和转移。药物测试:评估药物的疗效和毒性,为药物研发提供更可靠的模型。
类器官的来源介绍
类器官是在体外培养环境中生成的三维细胞聚集体,其具有类似于体内器官的一些结构和功能特征。类器官的来源主要有以下几种:胚胎干细胞(Embryonic Stem Cells,ESCs):胚胎干细胞具有多能性,能够分化为各种类型的细胞,并形成类器官。例如,在特定的培养条件下,胚胎干细胞可以分化为肠道类器官
人多能性干细胞ESCs/iPSCs在诱导脑类器官的应用(二)
导EB形成 1-2h 1. 当ESCs/iPSCs在六孔板中长到融合度为70-80%时用于诱导EB,通常每个六孔板孔的细胞可用于诱导一整个96孔板。 注:干细胞克隆的形态对于大脑组织形成的成功与否非常关键。克隆需呈现多能性的特征 (如边
人脑类器官准确模拟自闭症,有望治疗最复杂的脑疾病
凭借类器官和遗传学的革命性结合系统,科学家现在可在人脑类器官中全面测试多个突变的影响,识别出脆弱的细胞类型和基因调控网络,而这正是治疗自闭症谱系障碍的基础。这一成果为了解最复杂的人类大脑疾病提供了前所未有的创新途径,并为临床研究带来了希望。相关结果于13日发表在《自然》杂志上。 左半部分:人脑
人多能性干细胞ESCs/iPSCs在诱导脑类器官的应用(一)
过去,中枢神经系统(CNS)药物研究主要依赖于啮齿动物模型或细胞体外模型等传统方法。由于人类和啮齿类动物间的物种差异,所获得的数据难以真实地模拟神经发育和疾病机制等。随着干细胞技术的发展,培养人大脑类器官成为目前神经科学研究领域炙手可热的研究项目。大脑类器官是模拟人脑的生理特性的独特的工具,可用于研
科学家首次分离甲状旁腺干细胞并培育类器官
原文地址:http://news.sciencenet.cn/htmlnews/2022/10/488421.shtm 科学家研究表明,来自患者的甲状旁腺类器官(PTOs)可能为未来的生理学研究和药物筛选应用铺平道路。相关研究10月27日发表于《干细胞报告》。 “我们是世界上第一个能够分离甲
类器官进展人鼠混合大脑类器官首次对视觉刺激做出反应
随着干细胞技术的不断进步,源自人诱导多功能干细胞(human induced pluripotent stem cells, hiPSCs)的脑类器官已成为疾病模型中的热门话题。脑类器官有望为药物筛选、精准医学、神经修复等领域带来新的发展契机。 脑类器官的优势体现在下面两个方面: -与二维细
26日直播|中国国际纳米科学技术大会报告
原文地址:http://news.sciencenet.cn/htmlnews/2023/8/507223.shtm 直播时间:2023年8月26日(周六)08:30——12:00 直播平台: 科学网APP (科学网微博直播间链接) 科学网微博 科学
Nature-Methods:研究人员建立功能性血管状系统类脑器官
2019年10月7日,来自耶鲁大学干细胞中心In-Hyun Park研究组在Nature Methods杂志发表了题为“Engineering of human brain organoids with a functional vascular-like system”的文章,在其前期研究的基
Nature-Methods-|-向阳飞等建立功能性血管状系统类脑器官
如果说宇宙蕴藏无数奥秘,那么大脑必定是其中最难解谜团之一。对人类大脑的研究不仅关乎我们对人体内这一最复杂器官发育与功能的理解,相关的病理学、药物发现、再生医学等研究更是与国计民生直接相关。基于干细胞、发育生物学、生物材料等多学科理论与技术的类脑器官近年来发展迅速,为研究人类大脑发育、功能、疾病乃
类器官培养的技术挑战
培养过程复杂,需要精确控制培养条件和使用特定的生物材料。类器官的成熟度和复杂性仍有限,与真实器官存在一定差距。长期培养的稳定性和可重复性有待提高。
类器官培养技术的优点
能够更好地模拟体内器官的生理和病理状态,有助于研究器官发育、疾病发生机制等。可用于药物筛选和测试,能更准确地预测药物在人体内的效果和毒性。为再生医学提供了潜在的细胞来源和组织构建的基础。
类器官的技术局限
复杂性不足:不能完全重现体内器官的所有细胞类型和细胞间的复杂相互作用。长期稳定性:在长期培养中可能会出现变化,影响其可靠性。
类器官发育指标首次定义
近日,德国和奥地利的联合科研团队首次定义了器官发育的指标,揭示了组织中三维结构的连通性和结构的出现之间的联系,将有助于科学家设计模仿人体器官的自组织组织。 人体器官具有复杂的充满液体的管路和环路网络。它们具有不同的形状,并且不同器官的三维结构彼此之间的连接也不同。这方面的一个例子是肾脏的分支网
类器官培养技术的步骤
细胞获取:可以从胚胎、成体组织或诱导多能干细胞(iPSCs)等获取起始细胞。培养环境搭建:准备含有特定营养成分、生长因子和细胞外基质的培养基。三维培养:将细胞接种在合适的支架或基质上,如基质胶,以促进细胞的三维生长和自我组织。培养与维持:在合适的条件下(如温度、湿度、气体环境等)进行培养,并定期更换
类器官的作用和前景
目前类器官的培养主要是指上皮细胞类器官, 如消化道上皮细胞、乳腺上皮细胞、皮肤上皮细胞、肺泡上皮细胞等, 大部分的类器官中只有上皮细胞, 不含有成纤维细胞、免疫细胞、血管细胞等周围基质细胞. 这在很大程度上限制其在其他领域的应用, 如免疫防御的研究、干细胞微环境、肿瘤微环境调控方面的研究. 今后的研
类器官的特点和优势
高度模拟体内器官的结构和功能:虽然在复杂性和完整性上无法完全等同于真实器官,但能在一定程度上重现器官的细胞组成、细胞间相互作用和空间组织方式。来源多样:可以来源于胚胎干细胞、诱导多能干细胞、成体干细胞以及肿瘤组织细胞等。应用广泛:在生物医学研究的多个领域,如发育生物学、疾病模型构建、药物筛选和再生医
类器官培养方法的比较
类器官的来源广泛,样本材料经过不同方法处理后需要在体外进行培养,构建3D培养模型。不同细胞外基质可采用的培养方法也会存在差异,但都可以为类器官体外培养提供生长的微环境。其中VitroGel水凝胶为无动物源成分的功能性水凝胶,室温下与细胞培养基或含离子成分的溶液混合即可成胶,类器官培养方法多样;而目前
类器官的应用领域
类器官在多个领域发挥着重要作用:医学研究:疾病模型构建:例如,构建神经类器官来研究神经退行性疾病如阿尔茨海默病的发病机制。通过观察类器官中细胞的变化,了解疾病的发展过程。药物筛选:在肿瘤类器官上测试药物的疗效和毒性,有助于更准确地评估药物的潜力,提高药物研发的效率和成功率。再生医学:组织和器官修复:
小小类器官-承载移植梦
经过近10年的快速发展,科学家们已经能在实验室利用细胞培育、分化、自组装成各种类似人体组织的3D结构,制造出肝脏、胰脏、胃、心脏、肾脏甚至乳腺等在内的各种类器官。英国著名学术期刊《发育》杂志3月刊以专版形式,对类器官研究领域进行了全面回顾。 《科学》杂志网站报道称,这些实验室类器官并不是各种细
类器官技术应用的挑战
类器官技术在应用中面临着一系列挑战:类器官的复杂性和保真度:尽管类器官能模拟器官的某些特征,但它们往往不能完全重现体内器官的所有细胞类型、细胞间的复杂相互作用以及完整的生理功能。例如,大脑类器官中的神经元连接和神经网络的形成仍远远不如真实大脑那样复杂和精细。血管化和免疫微环境:大多数类器官缺乏血管系
人脑“类器官”研究获得突破
近日,来自哈佛大学、南加州大学及麻省理工学院的科学家们在开发人脑类器官方面取得的重大进展。相关研究成果发表于Nature杂志,论文标题为“Individual brain organoids reproducibly form cell diversity of the human cerebr
类器官的优势和局限
类器官的优势在于:疾病模型构建:可以用于研究各种疾病,特别是癌症,更好地模拟肿瘤的异质性和微环境。药物筛选:为药物研发和测试提供更接近体内真实情况的模型,提高药物筛选的效率和准确性。发育生物学研究:有助于了解器官的发育机制和细胞命运决定。然而,类器官也存在一些局限性,例如:与真实器官在结构和功能上仍
类器官的构建与制备
类器官的形成:类器官可以由两种类型细胞产生,一是多能干细胞(PSCs),例如胚胎干细胞(ESCs)、诱导干细胞(iPSCs),或器官限制性成体干细胞(ASCs)。这些细胞被培养在一个特定的环境中,允许它们遵循根深蒂固的基因指令,自x行组织成功能性的3D结构。从各种组织中培养类器官的方法是相似的。干细
类器官技术的应用介绍
类器官技术在多个领域都有应用潜力,包括但不限于:发育生物学:帮助研究器官的发育过程和机制。疾病病理学:用于疾病建模,更好地理解疾病的发生和发展机制。精准医疗:基于患者肿瘤的药物反应测试,为个性化治疗提供方案。药物毒性和药效试验:能模拟人体器官对药物的反应,筛选有效药物,减少动物实验,提升药物研发效率
类器官的类别及应用
自2009年成功建立上皮类器官以来,类器官培养已应用于各种器官,包括:大脑(brain)、视杯(Optic Cup)、内耳(Inner Ear)、肺(lung)、肝(liver)、结肠(Colon)、肾(Kidney)、胰腺(Pancreatic)、前列腺(Prostate)、胃(Gastroids
常见的类器官培养方法
常见的类器官培养方法:悬滴培养法将含有细胞和培养基的液滴倒置在培养皿盖的内表面,液滴依靠表面张力维持形状。细胞在液滴中聚集并自组织形成类器官。微孔培养法使用特制的微孔板,每个微孔中加入少量细胞悬液。细胞在微孔中生长和聚集形成类器官。生物材料支架培养法将细胞接种在生物相容性良好的支架材料(如胶原蛋白、
类器官的概念和优势
类器官是在体外培养环境中,由干细胞或祖细胞分化形成的具有三维结构和一定生理功能的微型器官类似物。它具有以下重要特点和意义:特点:三维结构:呈现出类似于体内器官的立体形态和细胞排列。包含多种细胞类型:能够模拟体内器官中不同细胞的组成和相互作用。一定程度的功能:具备部分类似于体内器官的生理功能。意义:疾