简述叶绿体基粒的光合磷酸化作用
叶绿体基粒的光合磷酸化作用:一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原NADP+,所以类囊体腔内有较高的H+(pH≈5,基质pH≈8),形成质子动力势,H+经ATP合酶,渗入基质、推动ADP和Pi结合形成ATP。 ATP合酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。CF1同样由5种亚基组成α3β3γδε的结构。CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。 碳反应 国际通用名称为碳反应,而非暗反应。因为该反应在没有光的时候,会因为缺乏光反应产生的ATP而无法进行。 C3途径(C3 pathway):亦称卡尔文 (Calvin)循环。CO2受体为RuBP,最初产物为3-磷酸甘油酸(PGA)。 C4途径(C4 pathway) :亦称哈奇-斯莱克(Hatch-Slack)途径,CO2受体为PE......阅读全文
光合磷酸化与电子传递的偶联关系
三种光合磷酸化作用都与电子传递相偶联。如果在叶绿体体系中加入电子传递抑制剂,那么光合磷酸化就会停止;同样,在偶联磷酸化时,电子传递则会加快,所以在体系中加入磷酸化底物会促进电子的传递和氧的释放。磷酸化和电子传递的关系可用ATP/e2-或P/O来表示。ATP/e2-表示每对电子通过光合电子传递链而形成
光合磷酸化与电子传递的偶联关系
三种光合磷酸化作用都与电子传递相偶联。如果在叶绿体体系中加入电子传递抑制剂,那么光合磷酸化就会停止;同样,在偶联磷酸化时,电子传递则会加快,所以在体系中加入磷酸化底物会促进电子的传递和氧的释放。磷酸化和电子传递的关系可用ATP/e2-或P/O来表示。ATP/e2-表示每对电子通过光合电子传递链而形成
简述叶绿体基粒的光合磷酸化作用
叶绿体基粒的光合磷酸化作用:一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原NADP+,所以类囊体腔内有较高的H+(pH≈5,基质pH≈8),形成质子动力势,H+经ATP合酶,渗入基质、推动ADP和
关于光合磷酸化的抑制剂的介绍
叶绿体进行光合磷酸化,必须:(1)类囊体膜上进行电子传递;(2)类囊体膜内外有质子梯度;(3)有活性的ATP酶。破坏这三个条件之一的试剂都能使光合磷酸化中止,这些试剂也就成了光合磷酸化的抑制剂。 (1)电子传递链 传递过程是:P680→pheo→Q→PQ→Fe-S-Cytb6→Cytf→PC
光合磷酸化与电子传递的偶联关系
三种光合磷酸化作用都与电子传递相偶联。如果在叶绿体体系中加入电子传递抑制剂,那么光合磷酸化就会停止;同样,在偶联磷酸化时,电子传递则会加快,所以在体系中加入磷酸化底物会促进电子的传递和氧的释放。磷酸化和电子传递的关系可用ATP/e2-或P/O来表示。ATP/e2-表示每对电子通过光合电子传递链而形成
光合磷酸化的过程和抑制剂介绍
叶绿体进行光合磷酸化,必须:(1)类囊体膜上进行电子传递;(2)类囊体膜内外有质子梯度;(3)有活性的ATP酶。破坏这三个条件之一的试剂都能使光合磷酸化中止,这些试剂也就成了光合磷酸化的抑制剂。(1)电子传递链传递过程是:P680→pheo→Q→PQ→Fe-S-Cytb6→Cytf→PC→P700。
光合磷酸化的类型和反应式介绍
1.非环式光合磷酸化(noncyclic photophosphorylation) 与非环式电子传递偶联产生ATP的反应。按图4-15,非环式光合磷酸化与吸收量子数的关系可用下式表示。2NADP+3ADP+3Pi+2H2O → 2NADPH+2H+3ATP+O2 在进行非环式光合磷酸化的反应中,体
光合磷酸化化学渗透学说的实验证据
①阶段光合磷酸化实验 指光合磷酸化可以相对分成照光阶段和暗阶段来进行,照光不向叶绿体悬浮液中加磷酸化底物,而断光时再加入底物能形成ATP的实验。1962年,中国的沈允钢等人,用此实验探测到光合磷酸化高能态(Z*)的存在。1963年贾格道夫(Jagendorf)等也观察到了光合磷酸化高能态的存在
光合磷酸化与电子传递的偶联关系
三种光合磷酸化作用都与电子传递相偶联。如果在叶绿体体系中加入电子传递抑制剂,那么光合磷酸化就会停止;同样,在偶联磷酸化时,电子传递则会加快,所以在体系中加入磷酸化底物会促进电子的传递和氧的释放。磷酸化和电子传递的关系可用ATP/e2-或P/O来表示。ATP/e2-表示每对电子通过光合电子传递链而形成
光合作用的光合磷酸化基本内容
光合磷酸化(photosynthetic phosphorylation或photophosphorylation)是指在光合作用中由光驱动并贮存在跨类囊体膜的质子梯度的能量把和磷酸合成为的过程。光合磷酸化有两个类型:非循环光合磷酸化和循环光合磷酸化。 [6] 1.非循环光合磷酸化 OEC处
简述光合磷酸化与电子传递的偶联关系
三种光合磷酸化作用都与电子传递相偶联。如果在叶绿体体系中加入电子传递抑制剂,那么光合磷酸化就会停止;同样,在偶联磷酸化时,电子传递则会加快,所以在体系中加入磷酸化底物会促进电子的传递和氧的释放。 磷酸化和电子传递的关系可用ATP/e2-或P/O来表示。ATP/e2-表示每对电子通过光合电子传递
乙酰胆碱对植物的光合作用
乙酰胆碱可以在不影响电子传递的情况下使叶绿体中的ATP合成下降80%以上。另外,浓度低于0.1 mmol的乙酰胆碱可以刺激非环式光合磷酸化的进行,而浓度大于0.1 mmol时非环式光合磷酸化则受抑制。在这两种情况下,乙酰胆碱并不影响NADP+的还原。新斯的明(neostigmine)可以抑制AT
ATP合成的结合转化机制
γ-亚基的转动引起β亚基的构象依紧绷(T)、松弛(L)和开放(O)的顺序变化,完成ADP和Pi的结合、 ATP的形成以及ATP的释放三个过程光合磷酸化的抑制剂叶绿体进行光合磷酸化,必须:(1)类囊体膜上进行电子传递;(2)类囊体膜内外有质子梯度;(3)有活性的ATP酶。破坏这三个条件之一的试剂都能使
光反应的过程步骤
光反应又称为光系统电子传递反应(photosythenic electron-transfer reaction)。在反应过程中,来自于太阳的光能使绿色生物的叶绿素产生高能电子从而将光能转变成电能。然后电子通过在叶绿体类囊体膜中的电子传递链间的移动传递,并将H+质子从叶绿体基质传递到类囊体腔,建立电
光合磷酸化和同线粒体的氧化磷酸化的主要区别
在光合作用的光反应中,除了将一部分光能转移到NADPH中暂时储存外,还要利用另外一部分光能合成ATP,将光合作用与ADP的磷酸化偶联起来,这一过程称为光合磷酸化。它同线粒体的氧化磷酸化的主要区别是:氧化磷酸化是由高能化合物分子氧化驱动的,而光合磷酸化是由光子驱动的。
光合作用的反应过程介绍
光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:①原初反应,包括光能的吸收、传递和转换;②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);③碳
光合作用的反应过程
光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:①原初反应,包括光能的吸收、传递和转换;②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);③碳
蓝细菌和光合细菌的区别?
蓝细菌与光合细菌区别是:光合细菌(红螺菌)进行较原始的光合磷酸化作用,反应过程不放氧,为厌氧生物,而蓝细菌能进行光合作用并且放氧。
质体醌的结构特点和功能
质体醌广泛存在于植物界,是具有一个多聚异戊二烯侧链的三烷基取代的苯醌。如质体醌A是含有9个异戊烯单位侧链的质体醌,在光合磷酸化中起重要作用。
ATP合成酶的分布情况
ATP合酶(ATP synthase)广泛分布于线粒体内膜,叶绿体类囊体,异养菌和光合菌的质膜上,参与氧化磷酸化和光合磷酸化,在跨膜质子动力势的推动下合成ATP。分子结构由突出于膜外的F1亲水头部和嵌入膜内的Fo疏水尾部组成。
光合作用的原理
光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。 其主要包括光反应、暗反应两个阶段, 涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。
光合作用的作用及反应步骤
光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。
光合作用的定义
光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。 其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。
光合作用的概念
光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。
叶绿体基粒的光反应与电子传递介绍
P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。 2H 2O→O2 + 4H+ +
简述叶绿体基粒的作用
叶绿体基粒的作用:光合作用的是能量及物质的转化过程。首先光能转化成电能,经电子传递产生ATP和NADPH形式的不稳定化学能,最终转化成稳定的化学能储存在糖类化合物中。分为光反应(light reaction)和暗反应(dark reaction),前者需要光,涉及水的光解和光合磷酸化,后者不需要
质体醌类型的主要区别
植物体中有几种PQ,它们的区别是异戊二烯单位数目不同。叶绿体中最多的是PQ9。在光合链中,既可传递电子,又可传递质子,其氧化还原反应:氧化还原电位约为0.1伏。氧化型的PQ从类囊体膜的靠外一侧接受电子,并与膜外质子结合,尔后向内扩散,在膜内侧被细胞色素f氧化,交出电子,同时把质子释放到膜内腔。即伴随
质体醌和苯醌的主要区别
植物体中有几种PQ,它们的区别是异戊二烯单位数目不同。叶绿体中最多的是PQ9。在光合链中,既可传递电子,又可传递质子,其氧化还原反应:氧化还原电位约为0.1伏。氧化型的PQ从类囊体膜的靠外一侧接受电子,并与膜外质子结合,尔后向内扩散,在膜内侧被细胞色素f氧化,交出电子,同时把质子释放到膜内腔。即伴随
真核生物特征
原核细胞功能上与线粒体相当的结构是质膜和由质膜内褶形成的结构,但后者既没有自己特有的基因组,也没有自己特有的合成系统。真核生物的植物含有叶绿体,它们亦为双层膜所包裹,也有自己特有的基因组和合成系统。与光合磷酸化相关的电子传递系统位于由叶绿体的内膜内褶形成的片层上 。原核生物中的蓝细菌和光合细菌,虽然
植物体中主要质体醌的区别
植物体中有几种PQ,它们的区别是异戊二烯单位数目不同。叶绿体中最多的是PQ9。在光合链中,既可传递电子,又可传递质子,其氧化还原反应:氧化还原电位约为0.1伏。氧化型的PQ从类囊体膜的靠外一侧接受电子,并与膜外质子结合,尔后向内扩散,在膜内侧被细胞色素f氧化,交出电子,同时把质子释放到膜内腔。即伴随