混合表面活性剂增敏火焰原子吸收测定地质样品中的钼

摘 要:研究了在火焰原子吸收光谱法中混合表面活性剂十二烷基硫酸钠和三乙醇胺对钼的增敏作用。在60 g/L三乙醇胺和15 g/L十二烷基硫酸钠的条件下,可使钼的灵敏度提高70%以上,且能消除多种共存元素的干扰。可用于一般地质样品中钼元素的测定。点击这里进入下载页面:进入下载页面......阅读全文

火焰原子吸收光谱法具有哪些特点

  火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。  仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。  火焰原子吸收光谱仪可测定多种元素,火焰原子吸收光谱法可

火焰原子吸收光谱仪干扰消除法

   1、火焰原子吸收光谱仪最佳条件的选择   A 吸收波长的选择   B 原子化工作条件的选择   a 空心阴极灯工作条件的选择(包括预热时间、工作电流)   b 火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度)   c 石墨炉最佳操作条件的选择(惰性气体、最

火焰原子吸收光谱法有哪些特点

火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发

单火焰原子吸收光谱仪仪器特点

单火焰原子吸收光谱仪仪器特点:1.光源:三灯位光源,手动切换调节。2.稳定可靠:仪器基线稳定性≤0.002A/30min.属于目前国内ling先。基线稳定性是考核一台仪器的基本指标,基线稳定性决定着主机一系列的运行状态,如噪声、灵敏度、重复性等。3.高能量:仪器灯电流控制在3mA-5mA(其它厂家8

火焰原子吸收光谱法的研究背景

背景主要涉及样品前处理和基体改进剂背景吸收主要来源于分子,检测器能分辨原子化了的元素,但如果在该吸收波长附近有未原子化的分子存在,这些吸收就会对元素信号产生干扰,所以选择和控制好你的灰化和原子化温度,有利于消除这些干扰。也可以通过加入基改提高灰化和原子化温度,使得这些分子不在该波长该温度下存在,以降

火焰原子吸收光谱法有哪些特点

火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发

火焰原子吸收光谱仪干扰消除法

1、火焰原子吸收光谱仪条件的选择  A吸收波长的选择B原子化工作条件的选择a空心阴极灯工作条件的选择(包括预热时间、工作电流)b火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度)c石墨炉操作条件的选择(惰性气体、原子化温度)C光谱通带的选择D检测器光电倍增管工作条件的选择 2、.火焰原子

火焰原子吸收光谱仪干扰消除法

1、火焰原子吸收光谱仪最佳条件的选择  A吸收波长的选择B原子化工作条件的选择a空心阴极灯工作条件的选择(包括预热时间、工作电流)b火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度)c石墨炉最佳操作条件的选择(惰性气体、zui佳原子化温度)C光谱通带的选择D检测器光电倍增管工作条件的选择

火焰原子吸收光谱仪的组成简介

  原子吸收光谱仪是由光源、原子化系统、分光系统和检测系统组成。  A 光源  作为光源要求发射的待测元素的锐线光谱有足够的强度、背景小、稳定性  一般采用:空心阴极灯无极放电灯  B 原子化器(atomizer)  可分为预混合型火焰原子化器(premixed flame atomizer),石墨

火焰原子吸收光谱法具有哪些特点

火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。  仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。  火焰原子吸收光谱仪可测定多种元素,火焰原子吸收光谱法可测到

火焰原子吸收光谱法有哪些特点

火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发

火焰原子吸收光谱法的优缺点

火焰:优点:1、稳定2、重现性好3、背景发射噪声低4、应用较广5、基体效应及记忆效应小缺点:1、原子化效率低(一般低于30%)2、灵敏度低3、液体进行石墨炉:优点:1、灵敏度高(检测限低)2、用量少样品利用率高3、可直接分析固体样品(不常用)和液体样品4、减少化学干扰5、原子化效率高6、设备复杂成本

火焰原子吸收光谱仪的用途简介

  原子吸收光谱仪可测定多种元素,火焰原子吸收光谱法可测到(10)-9g/mL数量级,石墨炉原子吸收法可测到(10)-13g/mL数量级。其氢化物发生器可对8种挥发性元素汞、砷、铅、硒、锡、碲、锑、锗等进行微痕量测定。  因原子吸收光谱仪的灵敏、准确、简便等特点,现已广泛用于冶金、地质、采矿、石油、

火焰原子吸收光谱法具有哪些特点

  火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。   仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。   火焰原子吸收光谱仪可测定多种元素,火焰原子

火焰原子吸收光谱法的优缺点

火焰:优点:1、稳定2、重现性好3、背景发射噪声低4、应用较广5、基体效应及记忆效应小缺点:1、原子化效率低(一般低于30%)2、灵敏度低3、液体进行石墨炉:优点:1、灵敏度高(检测限低)2、用量少样品利用率高3、可直接分析固体样品(不常用)和液体样品4、减少化学干扰5、原子化效率高6、设备复杂成本

火焰原子吸收光谱法的应用总结

 直接原子吸收光谱法可以用来测定周期表中70多种元素,间接原子吸收光谱法可以测定阴离子和有机化合物,该法用来测定同位素的组成、气相中自由原子的浓度、共振线的强度及气相中的原子扩撒系数等。这里总结下火焰原子吸收光谱法的应用。  原子吸收光谱法已广泛应用于地质、冶金、机械、化工、农业、食品、轻工、生物、

火焰原子吸收法检测铅含量样品空白浓度比样品浓度高

火焰原子吸收法检测铅浓度低时(10的负六次方以下)时,结果不好,不确定度很大。这也是铅这个元素原子化温度低易挥发的缘故。

原子吸收中火焰特性

火焰特性:ⅰ.空气—乙炔火焰,这是用途最广的一种火焰.a.贫燃性空气—乙炔火焰,其燃助比小于1:6,火焰燃烧高度较低,燃烧充分,温度较高,但范围小,适用于不易氧化的元素。b.富燃性空气—乙炔火焰,其燃助比大于1:3,火焰燃烧高度较高,温度较贫然性火焰低,噪声较大,由于燃烧不完全,火焰成强还原性气氛,

石墨炉原子吸收光谱法与火焰原子吸收光谱法有何不同

石墨炉分析溶液浓度一般为ug/L级(ppb);  火焰分析溶液浓度一般为mg/L级 (ppm) 石墨炉检测精度比火焰法高,但重复性不如火焰法,所以在火焰法能满足你的检测精度的前提下尽量用火焰法

石磨炉原子吸收光谱法与火焰原子吸收光谱法有何不同

有两点:(1)效率高:石墨炉的原子化效率接近100%,而火焰法的原子化效率只有1%左右.(2)灵敏度高:用石墨炉进行原子化时,基态原子在吸收区内的停留时间较长石墨炉法,检测灵敏度高火焰法稍差火焰法测试的元素多石墨炉法相对少石墨炉属于电加热方式最明显的,进样量石墨炉小.分析速度火焰快.火焰原吸的检测是

石墨炉原子吸收光谱法与火焰原子吸收光谱法有何异同

石墨炉原子吸收光谱仪与火焰原子吸收光谱仪都属于原子吸收光谱仪,由光源、原子化系统、分光系统和检测系统组成。  主要区别在:  1、原子化器不同  火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成。特点:操作简便、重现性好。  石墨炉原子器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩

石墨炉原子吸收光谱法与火焰原子吸收光谱法有何不同

有两点:(1)效率高:石墨炉的原子化效率接近100%,而火焰法的原子化效率只有1%左右. (2)灵敏度高:用石墨炉进行原子化时,基态原子在吸收区内的停留时间较长 石墨炉法,检测灵敏度高 火焰法稍差 火焰法测试的元素多 石墨炉法相对少 石墨炉属于电加热方式 最明显的,进样量石墨炉小.

火焰原子吸收光谱仪使用中火焰类型的选择原则

  火焰原子吸收光谱仪使用中火焰类型的选择主要从以下2点考虑:  1 火焰种类的选择  在火焰原子化法中,火焰类型和性质是影响原子化效率的主要因素。对大多数元素,多采用空气—乙炔火焰(背景干扰低)。  对低、中温元素(易电离、易挥发),如碱金属和部分碱土金属及易于硫化合的元素    (如Cu、Ag、

火焰原子吸收光谱仪使用中火焰类型的选择原则

 火焰原子吸收光谱仪使用中火焰类型的选择主要从以下2点考虑:  1 火焰种类的选择  在火焰原子化法中,火焰类型和性质是影响原子化效率的主要因素。对大多数元素,多采用空气—乙炔火焰(背景干扰低)。  对低、中温元素(易电离、易挥发),如碱金属和部分碱土金属及易于硫化合的元素    (如Cu、Ag、P

火焰法原子吸收光谱仪中火焰的种类和类型

1、火焰的种类 原子吸收光谱分析中常用的火焰有:空气一乙炔、空气一煤气(丙烷)和一氧化二氮一乙炔等火焰。 (1)空气一乙炔。这是较常用的火焰。此焰温度高(2300℃),乙炔在燃烧过程中产生的半分解物C*、CO*、CH*等活性基因,构成强还原气氛,特别是富燃火焰,具有较好的原子化能力。 (2)空气一煤

原子吸收光谱仪火焰原子化器的结构

原子吸收光谱仪火焰原子化是利用化学火焰产生的热能蒸发溶剂、解离分析物分子与产生被测元素的原子蒸气。火焰原子化器是开发zui早、应用zui广泛的原子化器。沃尔什和他的合作者在原子吸收光谱分析中使用的*个原子化器就是空气—煤气化学火焰原子化器。火焰原子化法中,常用预混合型原子化器(使试样、燃气、助燃气在

原子吸收光谱仪火焰原子化器的结构

原子吸收光谱仪火焰原子化是利用化学火焰产生的热能蒸发溶剂、解离分析物分子与产生被测元素的原子蒸气。火焰原子化器是开发最早、应用最广泛的原子化器。沃尔什和他的合作者在原子吸收光谱分析中使用的*个原子化器就是空气—煤气化学火焰原子化器。火焰原子化法中,常用预混合型原子化器(使试样、燃气、助燃气在进入火焰

火焰原子化原子吸收光谱测定氟元素的条件

原子吸收光谱不能测非金属元素,不管是火焰炉还是原子炉测氟一般可以用离子选择性电极在溶液中测定氟离子浓度来达到目的还有使用ICP可以测氟

原子吸收光谱仪的无火焰原子化器

  常用无火焰原子化器包括石墨炉原子化器和氢化物原子化器。  石墨炉原子化法是利用低压、大电流来使石墨管升温,最高温度可升至3000℃,这一升温过程可使石墨管中的试样完成干燥、灰化、原子化和净化等测定。  干燥:去除溶剂,防止样品溅射。  灰化:使基体和有机物尽量挥发出去。  原子化:待测化合物分解

在原子吸收光谱中怎么测定样品

1、把要测试的样品处理成可以上机测试的溶液(理论上讲要均匀、无混浊,处理样品时要求不挥发、不沉淀即无损失)2、开机-点灯-预热(这期间可以配置标准溶液)3、用标准溶液上机测试做标准曲线4、上机做样品5、现在的仪器基本都是可以直接出结果的。