研究实现人工光合作用高效稳定制氢
近日,中国科学技术大学教授孙海定、熊宇杰团队联合武汉大学刘胜院士团队,通过创新设计一种晶圆级可制造的新型硅基氮化镓纳米线光电极结构,实现了高达10.36%的半电池太阳能制氢效率,并在高电流密度下稳定产氢超过800小时,首次将光电极使用寿命从小于100小时的“小时级”推进至“月级”,成功突破传统光电制氢装置在效率和可靠性上的瓶颈,达到国际领先水平,为下一步规模化制氢应用打下基础。该成果日前发表于《自然-通讯》。光电化学水分解是一种通过阳光和水直接转化为绿色氢气的技术,因其环保且可持续的特点,已成为清洁能源领域的重要研究方向。在光电化学水分解中,光电极的催化活性和长期稳定性是实现高效、可靠氢气生产的关键。然而,许多传统光电极材料如硅、金属氧化物等易发生光腐蚀与化学腐蚀,并且催化剂与半导体界面结合弱,导致助催化剂脱落与催化活性衰减,从而限制了光电极的长期耐久性。针对这一挑战,团队设计并制备了一种可大规模生产的新型一维/三维异质异构的光......阅读全文
植物群体光合作用测量
光合作用的测量已经进入“群体(冠层)测量”的时代,单个叶片的测量已经远远不能满足实际需求。“群体(冠层)测量”+“自动监测”才是光合作用测量的发展趋势。“群体叶绿素荧光”+“多通道群体气体交换”组成了完美的群体光合作用测量方案。光合作用是植物最重要的代谢途径之一,被称为地球上最重要的化学反应。对植物
水生植物光合作用
1、水生植物有沉水植物、浮水植物和挺水植物.后两者通过空气中的叶子吸收二氧化碳进行光合作用.2、沉水植物能吸收溶解在水中的二氧化碳进行光合作用.3、碳酸会有一个分解合成平衡.碳酸—水+二氧化碳,当水中的二氧化碳浓度下降时,平衡向右移动,释放二氧化碳.
光合作用的反应过程
光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:①原初反应,包括光能的吸收、传递和转换;②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);③碳
影响光合作用的因素
植物的光合作用受内外因素的影响,而衡量内外因素对光合作用影响程度的常用指标是光合速率(photosynthetic rate)。一、光合速率及表示单位 光合速率通常是指单位时间、单位叶面积的CO2吸收量或O2的释放量,也可用单位时间、单位叶面积上的干物质积累量来表示。常用单位有:μmol CO2
中科院金属所成功研发新技术,实现半导体颗粒在液态金属中规模化成膜
太阳能光催化分解水绿氢制备技术属于前沿低碳技术。这一技术走向应用的关键是构建高效、稳定且低成本的太阳能驱动半导体光催化材料薄膜(即人工光合成膜,又称人工树叶)。该领域常用的薄膜制备技术因制备环境苛刻或成膜质量差,所得薄膜往往难以满足太阳能光催化分解水制氢的实际应用需求。自然界的植物光合作用可实现太阳
如何用光合作用测定仪测量拟南芥叶片的光合作用?
在过去的几年业务咨询中,不断有客户来电咨询如何利用气体交换法测定拟南芥叶片的光合作用参数。 对于这个问题,从测量原理上来讲拟南芥叶片(或类似的小叶片样品)和其它植物叶片的测量没有本质上的差异。关键的难点是如何解决拟南芥叶片过小的问题。叶片太小会带来的问题是;1一次只测一个小叶片,由于面积太小(小于1
电镜制样徕卡电镜制样流程图
电镜制样-电镜制样流程图
高校学科评估由排名制改为分级制
“综合考核大学学科的各种指标之后,差0.1分名次就差出来了,但这无法真正反映学科之间的差距。”全国政协委员、华北电力大学校长刘吉臻在接受科技日报记者采访时表示。 刘吉臻认为,教育部主导的大学学科评估对于学科建设具有评价、导向、激励和监督作用,但也会导致大学的短期行为,建议将现在的学科评估制度
分线制与总线制的区别是什么
总线和分线是就控制器与探测器的链接方式而言。如果,每个探测器都需要一根电线才能完成与控制器的通讯,则称此种连接方式为分线连接。如果几个探测器可以共用一根电线完成与控制器的通讯,则称此种连接方式为总线连接。总线一般传输的是数字信号,它的形式很多,如RS485总线;CAN总线等。
阴阳电极用同种催化剂-新型水分离器可200小时不间断制氢
美国斯坦福大学研究人员日前发明了一种低成本水分离器,阴阳电极均采用同种催化剂氧化镍—铁,可一周七天每天24小时用水生产氢气和氧气,为交通和工业领域提供清洁、可再生的氢能源。该研究成果刊登在近日出版的《自然·通讯》杂志上。 这项研究的共同作者、斯坦福大学副教授崔毅(音译)说:“这种使用单一催化剂
瑞典制备单原子层黄金,有望应用于二氧化碳转化、制氢等
4月16日,瑞典林雪平大学科研团队在学术期刊《自然-合成》发表成果,制备出只有单原子层厚度的黄金薄片“金烯(goldene)”,拓展了金的特性,可应用于二氧化碳转化、制氢和生产增值化学品等。材料在极薄时会展现出超乎寻常的特性,例如被誉为“新材料之王”的石墨烯就是一种单原子层厚度的碳材料。金通常属于金
科学家发现媲美自然光合作用的单核锰催化剂
将清洁的太阳能转化为可储存、可运输的燃料,是当今科学界“圣杯”式的难题。科学家曾提出“液态阳光”(即“太阳燃料”)的构想,以应对未来化石燃料枯竭的能源需求和气候变化。10月16日《自然—催化》发表的一篇论文显示,中科院大连化学物理所研究员、中科院院士李灿团队发现了一种可与自然光合作用催化剂活性相媲美
大连化物所等“液态太阳燃料合成示范项目”通过成果鉴定
10月15日,千吨级“液态太阳燃料合成示范项目”在甘肃省兰州新区通过中国石油和化学工业联合会组织的科技成果鉴定,该项目由中国科学院大连化学物理研究所研发、兰州新区石化产业投资集团有限公司建设和运营、华陆工程科技有限责任公司设计。鉴定委员会专家认为:液态太阳燃料合成示范项目集成创新液态太阳燃料合成
通过光合作用测定仪对植物的光合作用效果进行有效测定
光合作用测定仪助力设施农业的发展,设施农业指的是在可控的环境条件下,使用一些技术手段,实现植物有效生产的现代农业生产方式。当前设施农业在全过范围内大力推广,在农业领域,设施农业在对于作物生长过程中需要的光照、水分、温度、土壤环境的研究已经步入科技先进的水平,光合作用测定仪在帮助其研究的重要仪器之
植物光合作用测定仪研究干旱高温对胡杨光合作用影响
植物生长需要阳光、水和适宜的温度,这是我们大家都知道的,而干旱、高温等恶劣环境对植物是有一定的影响的,影响的程度视情况而定,但是光合作用是植物积累养分的重要过程,因此利用植物光合作用测定仪研究干旱高温对植物光合作用的影响,可以探究植物在干旱高温下的适应性机理,为干旱和半干旱地区生态系统修复提供重要的
解决玻璃行业制样难点玻璃颗粒制样设备
玻璃制品行业一直存在取样难的情况,璃颗粒制样设备是根据国际标准和国家标准研制的用于制备玻璃颗粒的仪器,可用于食品药品玻璃包材及玻璃器具(包括玻璃煮锅、玻璃咖啡壶、冰箱用玻璃冷藏瓶和饮料用玻璃杯等)玻璃颗粒耐水性试验样品的制备。 璃颗粒制样设备采用两级破碎,破碎与筛分一体化,实现了自动进样、
接近开关两线制和三线制区别
接近开关两线制和三线制区别CR18SCN08DPO-E2三线制接近开关又分为NPN型和PNP型1、它们的接线是不同的。2、两线制接近开关的接线比较简单,接近开关与负载串联后接到电源即可。3、三线制接近开关的接线:红(棕)线接电源正端;蓝线接电源0V端;黄(黑)线为信号,应接负载。负载的另一端是这样接
我所开发碱金属及其氨基化合物介导的化学链氨分解制氢新工艺
近日,我所氢能与先进材料研究部氢化物能源化学研究中心(DNL1901组群)陈萍研究员、郭建平研究员、高文波副研究员团队在氨分解制氢研究中取得新进展,开发了一种由碱金属及其氨基化合物介导的化学链氨分解制氢(CLADH)新工艺。与传统热催化氨分解制氢(TADH)工艺相比,CLADH能够在更低的温度下实现
植物光合作用测量系统概述
随着植物光合作用研究的深入和现代光合测定 系统的推广 ,越来越多的植物学科如农学、林学 、植物生理学 、植物生态学 、园艺学和遗传学 的研究均涉及到叶片光合作用的测定 。而净光合速率是衡量绿色植物光合能力大小的一个重要指标 。 植物光合测量系统可以测定气体CO2浓度、空气温湿度,叶片温度,光合
植物光合作用测定系统简介
植物光合作用测定系统是一种用于地球科学领域的分析仪器,于2015年11月02日启用。 技术指标 大小:40.6L x 57.2W x 21.1H cm;4个LED指示器;5个7-segment LED显示器;多路器覆盖区域:多路器到测量室最大半径15.0m,测量圆周的最大直径30.0m;。
光合作用的光合速率定义
光合速率通常是指单位时间单位叶面积所吸收的二氧化碳或释放的氧气的量,也可用单位时间单位叶面积上的干物质积累量来表示。
光合作用的内部影响因素
1. 不同部位在一定范围内,叶绿素含量越多,光合越强。以一片叶子为例,最幼嫩的叶片光合速率低,随着叶子成长,光合速率不断加强,达到高峰,随后叶子衰老,光合速率就下降。2. 不同生育期株作物不同生育期的光合速率不尽相同,一般都以营养生长期为最强,到生长末期就下降。以水稻为例,分蘖盛期的光合速率较快,在
光合作用早期工作机制破解
原文地址:http://news.sciencenet.cn/htmlnews/2023/3/496762.shtm 科技日报北京3月22日电 (记者张佳欣)光合作用是为地球上绝大多数生命提供动力的自然机器。据22日发表在《自然》杂志上的论文,英国剑桥大学领导的国际研究团队“破解”了光合作用最早
植物光合作用测定仪
1、多功能 同时测定光合速率、蒸腾速率、胞间二氧化碳浓度、气孔导度和水分利用效率,以及二氧化碳浓度、相对湿度、光合有效辐射和空气温度、叶片温度十项指标 2、稳定性 加入了温度调节的双波长红外二氧化碳分析器,二氧化碳测量精度不受温度变化影响,而且具有稳定、精度高,反映灵敏等特点,1秒钟之内就
关于光合作用的相关介绍
光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。 其主要包括光反应、暗反应两个阶段, 涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。 绿色植物利用太阳的光能,同化二氧化碳(CO
最早的光合作用相关介绍
1990年,一种红藻化石在加拿大北极地区被发现,这种红藻是地球上已知的第一种有性繁殖物种,也被认为是已发现的现代动植物最古老祖先。对红藻化石的年龄此前没有形成统一看法,多数观点认为它们生活在距今约12亿年前。 [5] 为了确定这种红藻化石的年龄,研究人员专门到加拿大巴芬岛收集包含这种红藻化石的
关于光合作用的意义介绍
将太阳能变为化学能 植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。每年光合作用所同化的太阳能约为人类所需能量的10倍。有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。因此可以说,光合作用提供今天的主要能源。绿色
光合作用生物的具体介绍
C3类植物 通过C3途径固定CO2的植物称为C3植物,它们行光合作用所得的淀粉会贮存在叶肉细胞中,因为这是卡尔文循环的场所。C3类植物属于高光呼吸植物类型,光合速率较低,其种类多,分布广,多生长于暖湿条件,如大多数树木、植物类粮食、烟草等。 [3] C4类植物 通过C4途径固定CO2的植物
光合作用的外部影响因素
1. 光照(1)光强度对光合作用的影响光合作用是一个光生物化学反应,所以光合速率随着光照强庋的增减而增减。在黑暗时,光合作用停止,而呼吸作用不断释放CO2;随着光照增强,光合速率逐渐增强,逐渐接近呼吸速率,最后光合速率与呼吸速率达到动态平衡相等。同一叶子在同一时间内,光合过程中吸收的CO2与光呼吸和
《科学》:MIT成功模拟光合作用
产生新能源可代替石油 据国外媒体报道,美国麻省理工大学(MIT)的科学家日前在实验室内再现了光合作用的过程,在整个过程中光合作用将水分解成氢和氧,并产生了可供燃烧的氢气和氧气。该实验的意义在于光合作用产生的能量能够被人类利用,这种技术将引发一场太阳能使用革命,并补偿煤炭,石油等不可再生资源的损耗。