高效水全分解反应实现

中国科学院院士、大连化学物理研究所研究员李灿联合研究员范峰滔等,在铁电材料光催化水分解研究方面取得进展。该团队通过精准调控铁电材料表面结构,揭示了限制其水分解效率的关键因素,实现了高效水全分解反应,表观量子效率达4.08%。光催化水分解制氢是将太阳能高效转化为化学能的关键技术,也是减少化石能源依赖、缓解环境污染的重要途径。在光催化反应过程中,光生电荷从飞秒时间尺度的生成到毫秒时间尺度的利用,经历体相和表面复合等多重消耗路径。这种电荷复合现象是提升太阳能转换效率的瓶颈之一。因此,高效分离光生电子和空穴以提升催化性能,是亟待解决的重要问题。铁电材料因非中心对称结构,在体相存在退极化电场,可有效驱动光生电子和空穴向相反的极化表面分离,在电荷分离方面具有重要潜力。该研究针对铁电材料光生电荷分离与催化活性不匹配问题,以单畴钛酸铅为研究模型,探讨了其表面结构与电荷动力学特性。研究显示,PbTiO3正极化面存在Ti空位缺陷,且这些缺陷作为电子......阅读全文

变废为宝!离场电催化技术可实现硫化氢全分解

硫化氢是一种剧毒化合物,但同时又是一种重要的资源,通常伴生或副产于天然气开采、炼油行业和煤化工过程。中国科学院大连化学物理研究所李灿院士团队研发成功了离场电催化技术,在室温、常压下实现硫化氢全分解制氢和硫磺,有望替代工业现行的克劳斯技术,实现天然气开采、炼油行业和煤化工过程中硫化氢的消除和资源化利用

测定全水含量有那些注意事项?

测定全水分zui关键的是保持煤采样时的全部水分,不允许有损失,因此,操作要求如下:1、采取的全水分煤样应保存在密封良好的容器内,并存放在阴凉干燥的地方。2、制样速度要快,用密封式破碎机3、制备全水分煤样时,要求不应过细,若需用较细的煤样,则选用密封式破碎机制样,或采用两步法进行全水分测定。4、全水分

新技术抑制光催化分解水制氢逆反应

原文地址:http://news.sciencenet.cn/htmlnews/2023/1/492771.shtm 近日,中科院大连化物所催化基础国家重点实验室、太阳能研究部(DNL16)李灿院士、博士后李政和李仁贵研究员等在纳米颗粒光催化完全分解水制氢的逆反应(氢气和氧气复合生成水的反应)研

核磁共振(NMR)应用领域之光催化分解水

自从1972年Fujishima 等人首次发现使用紫外光照射TiO2电极可以分解水产生H2以来,开发廉价实用的新型催化剂一直是实现太阳能分解水高效利用的关键因素。近年来众多研究者使用STM、FTIR、TPD、DFT等手段研究分解水的微观过程,但其测试条件过于理想化,与实际存在较大差距。核磁共振技术可

测定煤炭全水含量有哪些注意事项?

煤质分析中检测煤炭发热量的时候必须要先检测出煤炭水分,通过对煤样的分析检测可得到煤的全水和分析水。煤的水分是评价煤炭经济价值基本的指标。因为煤中水分含量越多,煤的无用成分也就越多。煤的全水分测定分为两部分,即先测定煤的外在水分,然后再测定煤的内在水分。测定全水含量有那些注意事项?1、测定全水分关键的

长江流域全覆盖水监控系统开建

  5月4日,记者从水利部长江水利委员会获悉,由长江委组织实施,总投资5.97亿元的长江流域全覆盖水监控系统已开工建设,工期3年。这也是我国首个数字孪生流域建设重大项目。  长江流域总面积180万平方公里,流域治理管理涉及19个省、自治区、直辖市。多年来,长江委履行流域水行政管理职责,系统布局了一批

测定煤炭全水含量有哪些注意事项?

煤质分析中检测煤炭发热量的时候必须要先检测出煤炭水分,通过对煤样的分析检测可得到煤的全水和分析水。煤的水分是评价煤炭经济价值基本的指标。因为煤中水分含量越多,煤的无用成分也就越多。煤的全水分测定分为两部分,即先测定煤的外在水分,然后再测定煤的内在水分。 测定全水含量有那些注意事项?1、测定全水分关键

杨晓刚团队综述丰富元素用于光电分解水制氢问题

  太阳能光电化学分解水制备氢气能源,被认为是解决人类可持续发展问题的重要方案之一。近日,河南许昌学院表面微纳米材料研究所暨河南省微纳米能量储存与转换材料重点实验室杨晓刚博士带领团队,在《纳米研究》杂志发表综述文章,介绍了相关实验研究的最新进展。  上世纪70年代,科学家发现二氧化钛能分解水产生氢气

土壤样品的前处理全量分析法之高压密闭分解法

该方法是将加少许水润湿、加入混合酸摇匀后的土样放入密闭的聚四氟乙烯坩埚中,将坩埚放入耐压的不锈钢套筒中,放在烘箱中(一般不超过180℃)分解的方法。它具有用酸量少、易挥发元素损失少、可同时进行批量试样分解等特点。其缺点是看不到分解反应过程,只能在试样冷却后开封才能看到试样分解是否完全;在分解有机质较

大连化物所在太阳能光催化分解水研究中取得进展

  因为世界范围的能源和环境问题,近年来利用太阳能光催化分解水制氢和还原二氧化碳的研究在国际学术界引起广泛的重视。光催化分解水被认为是化学科学领域“圣杯”式的难题,一旦取得突破,有望影响世界能源格局。  中国科学院院士李灿领导的中科院大连化学物理研究所洁净能源国家实验室太阳能部研究团队长期从事人工光

大连化物所太阳能光催化分解水研究取得新进展

  由于世界范围的能源和环境问题,近年来光催化分解水制氢和还原二氧化碳的研究在国际学术界引起广泛的重视。光催化分解水被认为是最具挑战性的难题,一旦取得突破,有望影响世界能源格局。实现这个反应的关键是发展高效的光催化剂,进而构筑高效光催化或光电催化体系。   近日,中国科学院大连化学物理研究所李灿院

新纳米催化剂能在可见光条件下快速分解水

  据美国每日科学网站12月16日(北京时间)报道,中美科学家携手,以氧化钴纳米粒子为催化剂,首次采用可见光,快速地将水分解成了氢气和氧气,简单快捷且能源转化效率较高。相关研究发表在周日出版的《自然·纳米技术》杂志网络版上。   该研究领导者、美国休斯敦大学电子和计算机工程学院副教授包季明(音译)

大连化物所宽光谱响应光催化分解水制氢研究获进展

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室及洁净能源国家实验室太阳能研究部研究员、中科院院士李灿和研究员章福祥、陈闪山等与日本东京大学教授Kazunari Domen课题组合作,在可见光驱动光催化Z机制完全分解水制氢研究中取得进展。研究结果发现,经一步氮化合成的MgTa2O6−xN

分解电压的分解电压和超电压

在标准状态下,在酸性介质中,以电池方式完成反应现在要使反应逆转,即拟以电解的方法完成下面的反应理论上要加1.23V的直流电即可。1.23V成为理论分解电压。实际情况如何?看如下的实验数据—电解池的电流随外电压变化的情况。当外电压小时,电解池的电流极小且变化很不显著。当电压超过1.70V后,电流明显增

我所发展抑制光催化分解水制氢逆反应新技术

  近日,我所催化基础国家重点实验室、太阳能研究部(DNL16)李灿院士、博士后李政和李仁贵研究员等在纳米颗粒光催化完全分解水制氢的逆反应(氢气和氧气复合生成水的反应)研究方面取得新进展,确认光催化完全分解水逆反应发生于低配位活性位点,并利用原子层沉积技术精准定点修饰抑制逆反应,从而显著提升了光催化

在月球和火星上分解水以获取氧,为未来太空定居做准备

   欧洲空间研究与技术中心(ESA)的Beth Lomax、英国格拉斯哥大学的Mark Symes和合作者研究发现,用电分解水,在月球和火星上获得的氧相较于地球更少。相关研究2月9日发表于《《自然—通讯》。这些发现或有助于人们理解未来使用有限资源实现外层空间定居。  在其他星球上实现人类生存需要燃

化学所等石墨烯电催化分解水析氢领研究取得进展

  电催化分解水制氢是减少环境污染及实现可再生清洁能源的重要途径。开发高效、稳定的制氢催化剂具有重要的科学价值和现实意义。石墨烯材料因其具有比表面积大、导电性好、稳定性高等优势,被广泛应用于电催化分解水制氢的研究中。但目前为止,石墨烯材料还仅仅作为催化剂的载体使用,通过助催化剂的负载或者杂原子掺杂等

大连化物所在太阳能光催化分解水研究取得新进展

  因为世界范围的能源和环境问题,近年来利用太阳能光催化分解水制氢和还原二氧化碳的研究在国际学术界引起广泛的重视。光催化分解水被认为是化学科学领域“圣杯”式的难题,一旦取得突破,有望影响世界能源格局。   李灿院士领导的洁净能源国家实验室太阳能部研究团队长期从事人工光合成太阳燃料的研究,近年来取得了

表面可控的IrOx纳米材料-具有优异的电催化分解水的性能

  氢能是最有前途的绿色能源形式之一,而水的电催化分解是得到高纯度氢的理想过程。近些年来,人们发现利用固体聚合物电解质膜在酸性介质中进行水的电解能使得氢气的生产和分离变得更加容易。因此,对于在酸性介质中具有高活性和寿命的金属Ir基电解水催化剂的研究和开发也引起许多科研工作者的关注。已有的研究表明,含

哈工大在光催化分解水制氢研究方面取得新进展

  氢能已被普遍认为是一种理想、无污染的绿色能源,其燃烧值高且燃烧后唯一的产物是水,对环境不会造成任何污染,因此,氢能开发是解决能源危机和环境问题的理想途径。在众多氢能开发的手段和途径中,通过光催化剂,利用太阳能光催化分解水制氢是最为理想和最有前途的手段之一;而开发高效、廉价的实用光催化剂是实现

大连化物所表面异相结促进光催化分解水制氢研究获进展

  近日,中科院大连化学物理研究所催化基础国家重点实验室及洁净能源国家实验室李灿院士领导的研究团队在“太阳能光催化分解水制氢”研究方面取得重要进展。在以Ga2O3为基础的半导体催化剂研究中,发现当其表面形成α晶相与β晶相的相结时,可以大幅提高光催化分解水的活性。进一步的时间分辨光谱研

土壤样品的前处理全量分析法之微波炉加热分解法

微波炉加热分解法是以被分解的土样及酸的混合液放入聚四氟乙烯容器中,在微波炉内加热使试样受到分解的方法。这种方法以聚四氟乙烯密闭容器做内筒,以能透过微波的材料如高强度聚合物树脂或聚丙烯树脂做外筒,在该密封系统内分解试样能达到良好的分解效果。在分解试样时不用观察及特殊操作,由于压力高,所以分解试样很快,

我国将建首个全流域“风光水互补”清洁能源示范基地

  我国第三大水电基地雅砻江流域将建设我国首个全流域的“风光水互补”清洁能源示范基地,充分利用雅砻江水电站群的调节性能,平抑风电、光伏发电的不稳定性,实现三种清洁能源的优化利用、打捆外送。这将有利于优化我国能源结构,并促进四川甘孜、凉山等贫困地区的经济发展。  记者从雅砻江流域水电开发有限公司了解到

中国科大在光催化全解水研究中取得进展

  近日,中国科学技术大学国家同步辐射实验室教授韦世强和特任教授姚涛课题组在利用同步辐射X射线吸收谱学(XAFS)技术精确设计单活性位点钴基催化剂实现太阳光驱动自发水分解研究中取得新进展,相关研究成果发表在《德国应用化学》期刊上(Angew. Chem. Int. Ed. 2017, 56, 931

糖原的分解

  糖原分解不是糖原合成的逆反应,除磷酸葡萄糖变位酶外,其它酶均不一样,反应包括:  这样将糖原中1个糖基转变为1分子葡萄糖,但是磷酸化酶只作用于糖原上的α(1→4)糖苷键,并且催化至距α(1→6)糖苷键4个葡萄糖残基时就不再起作用,这时就要有脱枝酶(debranching enzyme)的参与才可

尿素分解试验

 (1)原理:某些细菌具有尿素分解酶,能分解尿素产生大量的氨,使培养基呈碱性。   (2)培养基:尿素培养基。   (3)方法:将待检菌接种于尿素培养基,于35℃孵育18~24h小时观察结果。   (4)结果:培养基呈碱性,使酚红指示剂变红为阳性,不变为阴性。   (5)应用:主要用于肠

Ni3Se4@NiFe水滑石纳米片的制备及其全解水研究获进展

  近期,中国科学院合肥物质科学研究院固体物理研究所研究员李越课题组在分级异质结构Ni3Se4@NiFe 水滑石纳米片(LDH)的制备及其全解水研究方面取得新进展,相关研究结果发表在Nanoscale Horizons (DOI:10.1039/x0xx00000x)上。  随着能源危机和环境问题的

大连化物所太阳能光电催化分解水制氢研究获进展

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室及洁净能源国家实验室李灿院士领导的太阳能研究团队在“太阳能光电催化分解水制氢”研究方面取得新进展。在以Ta3N5为基础的半导体光阳极研究中,发现“空穴储存层”电容效应,藉此设计并获得了高效稳定的太阳能光电化学分解水体系,相关研究成果以通讯形

太阳能光电催化分解水制氢研究取得新进展

  日,中国科学院大连化学物理研究所催化基础国家重点实验室及洁净能源国家实验室研究员、中科院院士李灿领导的太阳能研究团队继发现并提出利用“空穴储存层”的新概念和新策略构建高效稳定的太阳能光电化学分解水体系(Angew.Chem.Int.Ed.,2014,53,7295-7299,Guiji Liu,

物理所发现光激发分解水的原子尺度机制及量子选择性

  光激发分解水产生氢气是人类梦寐以求的持续获取清洁能源的最终解决方式之一。然而自上世纪七十年代第一次实验展示以来,人们对原子层次上的光解水过程及机理并不清楚。这也阻碍着光解水效率的进一步提高。另外,由于产率较低,人们迫切需要发展新技术增强光解水效应。   金属颗粒的局域表面等离激元具有强大、可调的