“线粒体双相时钟”模型为器官配备专属“衰老GPS”

中国科学院上海营养与健康研究所研究员李昕研究组,通过解析人体多器官线粒体突变的“衰老图谱”,提出“线粒体双相时钟”模型,揭示了线粒体通过两种截然不同的模式编码器官衰老,进而同时编码了随机性和确定性衰老程序,统一了复制衰老与代谢衰老的观点分歧,为理解多器官异步衰老提供了新的时序观。5月27日,相关研究发表于《自然-衰老》。以往研究认为,细胞的“能量工厂”线粒体是远古细菌与真核细胞共生演化的产物,拥有独立的基因组。在生命过程中,线粒体基因组不断积累突变,且突变率远高于细胞核DNA,这些突变可能与衰老和疾病密切相关。研究团队利用罕见变异识别技术,对来自国际公开数据库中超万例的线粒体转录组低频变异数据进行深度提取,首次系统性绘制了人体组织特异性的线粒体突变图谱,揭示了线粒体突变随年龄增长而积累的“双相”时钟规律。系列实验表明,在不同器官中,线粒体突变累积有着不同的计时模式。在皮肤、消化道等需要不断更新细胞的组织中,线粒体基因组往往会加速......阅读全文

线粒体应激调控干细胞命运的“线粒体遇见”新模式被发现

  中国科学院广州生物医药与健康研究院刘兴国团队与广州医科大学应仲富团队等发现,线粒体未折叠蛋白反应(UPRmt)在多能干细胞命运中通过c-Jun调控组蛋白乙酰化,进而影响间充质-上皮转化(MET)的新模式(mtMET)。这一模式的缩写MET是“遇见”的过去式,因此科研人员将这一新模式称为“线粒体遇

线粒体翻译损伤通过激活线粒体UPR延长线虫寿命

近日,《氧化还原生物学》(Redox Biology)在线发表了中国科学院分子细胞科学卓越创新中心研究员周小龙研究组与中国科学院生物物理研究所研究员陈畅研究组的合作研究成果Mitochondrial translational defect extends lifespan in C. elegan

线粒体DNA的组成结构

研究人员发明了转换卵细胞基因材料的方法,用拥有健康线粒体的卵细胞取代携带错误线粒体DNA的卵细胞。结果是,胚胎会携带来自母亲和父亲的核DNA,以及卵细胞捐献者的线粒体DNA。mtDNA虽能合成蛋白质,但其种类十分有限。迄今已知,mtDNA编码的RNA和多肽有:线粒体核糖体中2种rRNA(12S及16

关于线粒体基质的介绍

  线粒体基质-内膜和嵴包围着的线粒体内部空间, 含有很多蛋白质和脂类,催化三羧酸循环中脂肪酸和丙酮酸氧化的酶类, 也都存在于基质中。线粒体有内外两层膜,内膜的某些部位向线粒体的内腔折叠形成嵴,【嵴】的周围充满了液态的基质----这些基质就是线粒体基质,其中含有许多有氧呼吸有关的酶.是有氧呼吸的主要

细胞化学基础线粒体DNA

线粒体DNA是线粒体中的遗传物质,线粒体能为细胞产生能量(ATP),是在细胞线粒体内发现的脱氧核糖核酸特殊形态。线粒体是为细胞提供能量(ATP)的细胞器。一个线粒体中一般有多个DNA分子。它们携带着自己的DNA——mtDNA,而这些基因的突变能引起线粒体疾病。虽然疾病症状是多变的,但大脑、肌肉和心脏

关于线粒体DNA的简介

  线粒体DNA是线粒体中的遗传物质,线粒体能为细胞产生能量(ATP),是在细胞线粒体内发现的脱氧核糖核酸特殊形态。线粒体是为细胞提供能量(ATP)的细胞器。一个线粒体中一般有多个DNA分子。  它们携带着自己的DNA——mtDNA,而这些基因的突变能引起线粒体疾病。虽然疾病症状是多变的,但大脑、肌

线粒体DNA的组成结构

研究人员发明了转换卵细胞基因材料的方法,用拥有健康线粒体的卵细胞取代携带错误线粒体DNA的卵细胞。结果是,胚胎会携带来自母亲和父亲的核DNA,以及卵细胞捐献者的线粒体DNA。mtDNA虽能合成蛋白质,但其种类十分有限。迄今已知,mtDNA编码的RNA和多肽有:线粒体核糖体中2种rRNA(12S及16

关于线粒体作用的介绍

  ⑴若将纯化的正常的线粒体与纯化的细胞核在一起保温,并不导致细胞核的变化。但若将诱导生成PT孔道的线粒体与纯化的细胞核一同保温,细胞核即开始凋亡变化。   ⑵细胞死亡调节蛋白不论是抑制死亡的bcl-2家族还是促进细胞死亡的Bax家族均以线粒体作为靶细胞器。bcl-2蛋白的C端的疏水肽段能插入线粒

线粒体DNA的组成结构

研究人员发明了转换卵细胞基因材料的方法,用拥有健康线粒体的卵细胞取代携带错误线粒体DNA的卵细胞。结果是,胚胎会携带来自母亲和父亲的核DNA,以及卵细胞捐献者的线粒体DNA。mtDNA虽能合成蛋白质,但其种类十分有限。迄今已知,mtDNA编码的RNA和多肽有:线粒体核糖体中2种rRNA(12S及16

线粒体疾病发病机理阐明

  日本熊本大学魏范研准教授、东京大学铃木勉教授的研究小组最新研究发现,一种被称作牛磺酸的功能性氨基酸在线粒体内外蛋白质的生产和保质中具有重要作用,实验表明,通过特定的化学物质维持蛋白质质量,可以改善线粒体疾病的症状。  线粒体是真核细胞内的“能量制造工厂”,其中含有数千种蛋白质,维持着线粒体的各种

线粒体疾病发病机理阐明

  日本熊本大学魏范研准教授、东京大学铃木勉教授的研究小组最新研究发现,一种被称作牛磺酸的功能性氨基酸在线粒体内外蛋白质的生产和保质中具有重要作用,实验表明,通过特定的化学物质维持蛋白质质量,可以改善线粒体疾病的症状。  线粒体是真核细胞内的“能量制造工厂”,其中含有数千种蛋白质,维持着线粒体的各种

线粒体基因的合成原理

线粒体基因组能够单独进行复制、转录及合成蛋白质,但这并不意味着线粒体基因组的遗传完全不受核基因的控制。线粒体自身结构和生命活动都需要核基因的参与并受其控制,说明真核细胞内尽管存在两个遗传系统,一个在细胞核内,一个在细胞质内,各自合成一些蛋白质和基因产物,造成了细胞核和细胞质对遗传的相互作用;但是,核

线粒体DNA的组成结构

研究人员发明了转换卵细胞基因材料的方法,用拥有健康线粒体的卵细胞取代携带错误线粒体DNA的卵细胞。结果是,胚胎会携带来自母亲和父亲的核DNA,以及卵细胞捐献者的线粒体DNA。mtDNA虽能合成蛋白质,但其种类十分有限。迄今已知,mtDNA编码的RNA和多肽有:线粒体核糖体中2种rRNA(12S及16

线粒体病的症状体征

  1.线粒体肌病(mitochondrial myopathy):多在20岁时起病,也有儿童及中年起病,男女均受累,临床特征是骨骼肌极度不能耐受疲劳,轻度活动即感疲乏,常伴肌肉酸痛及压痛,肌萎缩少见,易误诊为多发性肌炎,重症肌无力和进行性肌营养不良等。  2.线粒体脑肌病(mitochondria

Cell特辑:多面线粒体

  “Cell Press Selections”是由Cell出版社推出的一份推荐文章集合手册,主要介绍某个生命科学研究领域最新的进展及突出成果。相关特辑内容包括研究论文,评论性文章以及snapshots,涉及了同一领域的方方面面,更为重要的是这些文章由赞助商赞助,可以免费获取。  线粒体在我们体内

Science修订线粒体作用模型

  线粒体是细胞内的重要器官,负责从营养物质中提取能量,并将其转化为细胞可用的能源。2008年科学家们在实验观察的基础上,提出了修订版的线粒体作用模型,他们对这一新模型进行了验证。文章发表在本期的Science杂志上。   营养物质的摄取消化和吸收,是为了给机体内的细胞提供能量。消化道对营养物质进

关于线粒体基质的简介

  线粒体基质-内膜和嵴包围着的线粒体内部空间, 含有很多蛋白质和脂类,催化三羧酸循环中脂肪酸和丙酮酸氧化的酶类, 也都存在于基质中。线粒体有内外两层膜,内膜的某些部位向线粒体的内腔折叠形成嵴,嵴的周围充满了液态的基质----这些基质就是线粒体基质,其中含有许多有氧呼吸有关的酶.是有氧呼吸的主要场所

线粒体的结构与功能

In an attempt to be concise and understandable, introductory level courses and textbooks frequently present concepts that are technically correc

细胞化学词汇线粒体DNA

中文名称:线粒体DNA外文名称:Mitochondrial DNA,mtDNA定       义:线粒体DNA是线粒体中的遗传物质,线粒体能为细胞产生能量(ATP),是在细胞线粒体内发现的脱氧核糖核酸特殊形态。线粒体是为细胞提供能量(ATP)的细胞器。一个线粒体中一般有多个DNA分子。 

如何诊断线粒体疾病?

  线粒体肌病的诊断依赖于典型的临床症状:四肢近端极度不能耐受疲劳、身体矮小和神经性耳聋等,伴各亚型临床特征;血清乳酸、丙酮酸增高和肌肉活组织检查发现RRF,mtDNA缺失或点突变等之结果。线粒体脑肌病患者CT或MRI检查可见白质脑病、基底核钙化、脑软化、脑萎缩和脑室扩大等。  但应注意炎症肌病和其

线粒体的结构和功能

线粒体(mitochondrion) ——主要协助细胞呼吸,并且产生细胞使用能量最直接的形式,三磷酸腺苷。特别的是线粒体有自己的遗传分子,与细胞核的遗传物质不同,只遗传到这个细胞器的子代细胞器,而不是子代细胞,能够让线粒体自我分裂增殖,制造本身需要的一些蛋白质,但是仍有一些调节控制的过程受到细胞核的

线粒体的5个功能

线粒体的5个功能:能量转化、三羧酸循环、氧化磷酸化、储存钙离子、调节膜电位并控制细胞程序性死亡。能量转化线粒体是真核生物进行氧化代谢的部位,是糖类、脂肪和氨基酸最终氧化释放能量的场所。线粒体负责的最终氧化的共同途径是三羧酸循环与氧化磷酸化,分别对应有氧呼吸的第二、三阶段。细胞质基质中完成的糖酵解和在

线粒体也能来自父亲

  在人类每个细胞中都能发现的能量产生结构通常只继承自母亲。但如今,美国的医生在3个不同家庭中辨别出十几个从父母双方那里继承线粒体的人。  这些人似乎是常规之外的极罕见个例,可能的原因是其所在家庭含有一种突变,而该突变会扰乱通常阻止父亲线粒体遗传给后代的机制。  线粒体产生细胞运行所需的能量,而包括

线粒体的提取与观察

线粒体是细胞中重要的细胞器,存在于绝大多数生活细胞中,它的主要功能是提供细胞内各种物质代谢所需要的能量。正由于这样,对线粒体膜,呼吸链酶及线粒体DNA等成分的结构,功能以及物理化学性质的研究已经成为细胞生物学研究中的重要课题,所以提取线粒体的技术已经成为线粒体研究中必不可少的手段,线粒体大量存在于代

线粒体电镜照片观察实验

电子显微镜常用的有透射电镜(transmissionelectronmicroscope,TEM)和扫描电子显微镜。与光镜相比电镜用电子束代替了可见光,用电磁透镜代替了光学透镜并使用荧光屏将肉眼不可见电子束成像。实验方法原理线粒体同内质网一样,除原核细胞和哺乳动物成熟的红细胞外,其他所有细期线粒体(

线粒体DNA的组成结构

  研究人员发明了转换卵细胞基因材料的方法,用拥有健康线粒体的卵细胞取代携带错误线粒体DNA的卵细胞。结果是,胚胎会携带来自母亲和父亲的核DNA,以及卵细胞捐献者的线粒体DNA。  mtDNA虽能合成蛋白质,但其种类十分有限。迄今已知,mtDNA编码的RNA和多肽有:线粒体核糖体中2种rRNA(12

线粒体DNA的结构特点

线粒体DNA是线粒体中的遗传物质,线粒体能为细胞产生能量(ATP),是在细胞线粒体内发现的脱氧核糖核酸特殊形态。线粒体是为细胞提供能量(ATP)的细胞器。一个线粒体中一般有多个DNA分子。

线粒体DNA的组成结构

研究人员发明了转换卵细胞基因材料的方法,用拥有健康线粒体的卵细胞取代携带错误线粒体DNA的卵细胞。结果是,胚胎会携带来自母亲和父亲的核DNA,以及卵细胞捐献者的线粒体DNA。mtDNA虽能合成蛋白质,但其种类十分有限。迄今已知,mtDNA编码的RNA和多肽有:线粒体核糖体中2种rRNA(12S及16

线粒体基因何时丢失的?

  生物学领域的一个巨大秘密,是细胞内线粒体拥有自己的遗传基因。为了解释这个秘密,有一个关于线粒体的起源的假说,就是内共生学说,认为线粒体来源于细菌,即一种原始细菌被真核生物吞噬后,在长期的共生过程中,通过演变,形成了线粒体。该学说认为,线粒体祖先原线粒体是一种可进行三羧酸循环和电子传递的革兰氏阴性

细胞器的线粒体

  线粒体形状为棒状,是细胞进行有氧呼吸的主要场所,具有双层膜,内层膜向内折叠形成“嵴”(作用是可以扩大酶的附着位点)。线粒体又称"动力车间",细胞生命活动所需的能量,大约95%来自线粒体,含核糖体,可产生DNA和RNA,能相对独立遗传。存在于所有真核生物细胞中(厌氧菌及哺乳动物成熟的红细胞除外),