PNAS:微流控芯片模拟血管助力纳米药物研究

微流控芯片(又称芯片实验室)是一种以在微米尺度空间对流体进行操控为主要特征的科学技术。它具有将化学和生物实验室的样品制备、反应、分离、检测等基本功能微缩到一个几平方厘米芯片上的能力。 2014年1月 21日,《美国国家科学院院刊》(简称PNAS)发表了一篇论文,报告佐治亚理工学院的研究人员开发了一种微流体装置,在该微流控芯片上,科学家可以控制内皮细胞层的渗透率,改变细胞内血液流动的速度,并引入化学物质来消除体内炎症。 微流控芯片技术发展迅速 由于在生物、化学、医学等领域的巨大潜力,微流控芯片已经处于一个生物、化学、医学、流体、电子、材料、机械等多学科交叉的崭新研究领域,其发展令人瞩目。随着纳米技术的进步,继续开放治疗手段的多样化,微流控芯片变得越来越重要——例如应用于活的有机体内平台上,用来筛选潜在的纳米药物。 另外,动脉粥样硬化也是一个可以受益于纳米药物的疾病。通过微流控芯片,科学家可以有效地观......阅读全文

微流控分析芯片在细胞中的检测应用

   微流控分析芯片是通过微加工技术将微管道、微泵、微阀、微储液器、微电极、微检测元件、窗口和连接器等功能元器件,像集成电路一样集成在芯片材料上的微全分析系统。微流控分析技术已经成为重要的化学及生物分析手段,其分析的优越性( 材料及试剂的低耗、原位分析、快速实时等) 在细胞、分子水平检测得以应用和展

微流控芯片和生物芯片的区别

概念:微流控芯片指的是在一块几平方厘米的芯片上构建化学或生物学实验室,它可以把所涉及的化学和生物学领域中的样品制备、反应、检测,细胞培养、分选、裂解等基本操作单元集成到这块很小的芯片上,用于完成不同的生物学和化学反应过程,并通过由微通道形成的网络,使微流体贯穿整个系统,用以实现常规化学或生物学实验室

微流控芯片与微阵列(生物)芯片对比

微流控芯片微阵列(生物)芯片主要依托学科分析化学、MEMS生物学、MEMS结构特征微管道网络微探针阵列工作原理微管道中流体控制生物杂交为主使用次数重复使用数十次至数千次一般一次前处理功能多数技术供选择无集成化对象化学、生命科学等领域高密度杂交反应阵列应用领域全部分析领域DNA等专用生物领域产业化程度

生物芯片与微流控芯片的概念

所谓生物芯片(biochip或bioarray ),是根据生物分子间特异相互作用的原理,将生化分析过程集成于芯片表面,从而实现对DNA、RNA、多肽、蛋白质以及其他生物成分的高通艱速检测。狭义的生物芯片概念是指通过不同方法将生物分子(寡核苷酸' cDNA、genomic DNA、多肽、抗体、

基于微流控芯片的在线滴定

图1.  非连续性的经典滴定方法和连续性同时滴定方法的比较。 基于微流控芯片系统的同时滴定仪可实现在线滴定分析,使测量连续流动的样品成为可能,并由此大大减少了分析时间和试剂的消耗。 滴定法和重量法一样,是目前最经典也最基础的分析方法,其在1830年由法国化学家、物理学家盖·吕萨克

微流控分析芯片加工技术

微流控分析是以微管道为网络连接微泵、微阀、微储液器、微电极、微检测元件等具有光、电和流体输送功能的元器件,最大限度地把采样、稀释、加试剂、反应、分离、检测等分析功能集成在芯片上的微全分析系统。目前,微流控分析芯片的大小约几个平方厘米,微管道宽度和深度(高度)为微米和亚微米级。微流控分析芯片的加工技术

微流控芯片为什么这样强悍

  从1990年Manz等人首次提出了微型全分析系统的概念,到2003年Forbes杂志将微流控技术评委影响人类未来15件最重要的发明之一,微流控技术得到了飞速的发展,其中的微流控芯片技术作为当前分析科学的重要发展前沿,在生物、化学、医药等领域都发挥着巨大的作用,成为科学家手中流动的"芯"。  微流

微流控芯片材料选型的原则

   ①芯片材料与芯片实验室的工作介质之间要有良好的化学和生物相容性,不发生反应;  ②芯片材料应有很好的电绝缘性和散热性;  ③芯片材料应具有良好的可修饰性,可产生电渗流或固载生物大分子;  ④芯片材料应具有良好的光学性能,对检测信号干扰小或无干扰;  ⑤芯片的制作工艺简单,材料及制作成本低廉。

简述微流控芯片检测仪

  微流控芯片是在一块几平方厘米的芯片上构建的一个生化实验室,它以微机电加工技术(MEMS)为基础,在硅片、玻璃或聚二甲基硅氧烷(PDMS)等材料上制造微管道,并由微通道形成网络,以可控流体贯穿整个系统,实现生物和化学领域中所涉及的反应、分离、检验、细胞培养等基本操作,用以取代常规生物或化学实验室的

微流控芯片——体外诊断新宠

近年来,各种新技术、新方法的兴起和融合,促进了体外诊断(IVD)仪器、试剂的开发应用和更新换代。根据威尼研究所的研究,全国体外诊断市场快速发展,预计将在未来的10~15年内超过美国,成为世界上最大的体外诊断市场。 那么,在这样一个宏大的市场上,微流控芯片技术如何脱颖而出引领一个新潮流呢?

微流控芯片检测微小卫星DNA

微小卫星DNA主要是指广泛存在于高等动物、低等动物基因组中长度100~500 bp多态性的DNA序列且微小卫星DNA核心序列仅仅是2~5bp,其也称为短串联重复(STR),使用微流控芯片检测可以积极克服传统的垂直板凝胶电泳背景模糊、费时费力、误差较大等,但是也有相对不稳定的部分缺点,微流控芯片检测应

微流控芯片与基因的关系

  基因测序主要是指采用先进的方法对高等动物、低等动物核酸序列进行系统化、规范化、快速化分析,此过程需要的工程量尤为巨大。目前,对微流控芯片实验室主要采用96根阵列毛细管电泳对基因序列进行系统化测定,虽在一定程度上加快了人类基因组项目,但是还不能实现高效、灵敏、快速、价廉、自动、准确等基本特点,而微

微流控芯片的发展前景

  微流控分析芯片最初只是作为纳米技术革命的一个补充,在经历了大肆宣传及冷落的不同时期后,最终却实现了商业化生产。微流控分析芯片最初在美国被称为“芯片实验室”,在欧洲被称为”微整合分析芯片”,随着材料科学、微纳米加工技术和微电子学所取得的突破性进展,微流控芯片也得到了迅速发展,但还是远不及“摩尔定律

微流控芯片的前景及进展

前景目前媒体普遍认为的生物芯片(micro-arrays),如,基因芯片、蛋白质芯片等只是微流量为零的点阵列型杂交芯片,功能非常有限,属于微流控芯片(micro-chip)的特殊类型,微流控芯片具有更广泛的类型、功能与用途,可以开发出生物计算机、基因与蛋白质测序、质谱和色谱等分析系统,成为系统生物学

微流控芯片的组成材料

   微流控芯片的结构由具体研究和分析目的决定,设计和加工微流控芯片片基开展微流控芯片研究的基础。  微流控芯片的主体结构由上下两层片基组成(PMMA、PDMS、玻璃等材料),包括微通道,微结构、进样口,检测窗等结构单元构成。外围设备有蠕动泵、微量注射泵、温控系统、以及紫外、荧光、电化学、色谱等检测

对微流控芯片技术的展望

微流控技术由微加工技术与三维培养相结合产生,在体外细胞培养中潜力较高。多器官微流控芯片技术可在微尺度对流体精准控制,模拟人体生理环境,克服了传统二维细胞培养模式与动物实验的不足,具有高度仿生性。MOC系统的发展结合了工程技术的优点,可调整流体流动和微通道中可控的局部组织-流体比率。MOC技术旨在建立

简述微流控芯片分析仪

微流控芯片( Microfluidic Chip),或称微全分析系统( Micro Total Analysis System ),是将采样、预处理、加试剂、反应、分离、检测等集成在微芯片上进行的一门新技术,已成为目前分析科学发展的重要方向与前沿之一。微流控芯片分析仪可广泛用于化学、药学、医学、生命

微流控芯片的优点有哪些?

 微流控芯片或者芯片实验室是以分析化学和分析生物为研究对象,利用微加工技术在芯片基板上面刻划、加工微通道,最终封装成带有流体进口、中间流道、出口的封装芯片。作为生物、化学、医学、流体、电子、材料、机械等交叉学科而兴起的研究热点,微流控芯片无论在几何尺寸还是分析功能都要比一般的常规实验具有非常明显的优

微流控芯片组成材料

  微流控芯片的结构由具体研究和分析目的决定,设计和加工微流控芯片片基开展微流控芯片研究的基础。  微流控芯片的主体结构由上下两层片基组成(PMMA、PDMS、玻璃等材料),包括微通道,微结构、进样口,检测窗等结构单元构成。外围设备有蠕动泵、微量注射泵、温控系统、以及紫外、荧光、电化学、色谱等检测部

微流控芯片的发展及特点

微全分析系统的概念是在1990年首欠由瑞士Ciba2Geigy公司的Manz与Widmer提出的,当时主要强调了分析系统的“微”与“全”,及微管道网络的MEMS加工方法,而并未明确其外型特征。次年Manz等即在平板微芯片上实现了毛细管电泳与流动。微型全分析系统当前的发展前沿。微流控分析系统从以毛细管

微流控芯片的通用连接方法

  当使用钢针进行连接时,可能由于打孔质量的差异或者用户的不熟练导致劈孔,甚至引入各种碎屑,从而导致芯片堵塞;当使用粘接接头的方式进行连接时,粘接接头的使用增大了芯片进出口的面积,降低了芯片进出口可使用的密度,同时在粘接的过程中,需要等待较长的粘胶固化时间。为了防止以上问题,我们可以使用以下通用的连

微流控芯片的技术优势

生命分析技术不断发展,在新的时代背景,又面临新挑战和发展机遇:要求在特别小的空间,特定的时间,特定的外界条件进行物质定性、定量、结构分析、形貌分析等工作。而微流控技术的出现为生命分析面临的三大特殊挑战提供了有力的操控工具。微流控技术具有如下特点:· 集成小型化与自动化: 通过流道的尺寸和曲度、微阀门

简述微流控芯片键合技术

微流控芯片实验室的成品率普遍较低,其中密封技术是微流控芯片制造过程的关键步骤,也是难点之一,封合不佳就会出现漏液,从而影响实验结果。玻璃等硬质材料常通过热键合和阳极键合技术实现密封,而节能省时的低温玻璃键合技术更受科研人员的青睐。此外,胶黏剂键合和表面改性键合以其便捷性和实用性的优势成为玻璃和聚合物

微流控芯片驱动磁驱动泵

采用磁激发的泵(magnetic-actuated pump) 即磁驱动泵(magnetically-driven pump ,MDP) 也是一种重要的微流体驱动控制技术—磁流控技术。磁流控技术与光驱动泵一样,一般需要在被驱动流体中添加亲磁性纳米粒子介质,实现对流体的有效控制。磁流体驱动泵的优缺点优

微流控芯片优势及其瓶颈分析

微流控芯片技术是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。微流控分析是微型全分析系统的主要组成部分,而将化学分析的多种功能集成在邮票大小的芯片上的微流控芯片是当前最活跃的发展前沿,代表着21世纪分析仪器走向微型化、集成化的发展

微流控芯片的材料和特点

1. 微流控芯片的材料刚性材料——单晶硅、无定性硅、玻璃、石英等;刚性有机聚合物材料如环氧、聚脲、聚氨、聚苯乙烯和聚甲基丙烯酸甲酯等;弹性材料——二甲基硅氧烷( PDMS) 。2. 微流控分析芯片材料的特点有机聚合物芯片材料的基本要求:①材料应易被加工;②有良好的光学透明性;③在分析条件下材料应是惰

微流控芯片的加工技术

一、光刻(lithography)和刻蚀技术(etching)1.光刻工艺光刻是用光刻胶、掩模和紫外光进行微制造 ,工艺如下 :①仔细地将基片洗净;②在干净的基片表面镀上一层阻挡层 ,例如铬、二氧化硅、氮化硅等;③再用甩胶机在阻挡层上均匀地甩上一层几百 A厚的光敏材料——光刻胶。光刻胶的实际厚度与它

微流控芯片制作方法详解

  微流控芯片组成结构  微流控芯片由片基(pmma;玻璃,pdms等材料)一由通道,进液口,检测窗等结构构成。外围设备有蠕动泵,微量注射泵,控温,加速度,及紫外,光谱,荧光等检测部件组成。可以将生物学实验室的实验过程浓缩到一个片基上,因此又称为LABonchip。片基的结构由具体实验决定,设计和加

微流控芯片的发展趋势

  1、基于液滴微流控的超高通量筛选技术将对新药研发、生物工程酶的改进、结构生物学研究起到关键的推进作用;  2、微流控芯片将成为单细胞分析的核心工具,促进单细胞基因组学、蛋白组学、代谢组学的发展,从单细胞层次揭示新的分子机制、信号传导和代谢通路;  3、以数字PCR芯片和循环肿瘤细胞CTC捕获芯片

微流控芯片加工技术解析

  微流控芯片的发展  微全分析系统的概念是在1990年首欠由瑞士Ciba2Geigy公司的Manz与Widmer提出的,当时主要强调了分析系统的“微”与“全”,及微管道网络的MEMS加工方法,而并未明确其外型特征。次年Manz等即在平板微芯片上实现了毛细管电泳与流动。微型全分析系统当前的发展前沿。