富氧空气乙炔火焰原子吸收光谱法测定地质样品中痕量铍
摘 要 研究了用富氧空气2乙炔火焰原子吸收光谱法测定铍的分析方法。当空气流量为6.0 L·min - 1 , 氧气流量为4.2 L·min - 1 , 乙炔流量为7.4 L·min - 1时铍有较高的吸光度。在2.5 %的82羟基喹啉介质中, 能较好地消除基体干扰且有一定的增感作用。方法的检测限为0.006μg·mL - 1 , 测定精密度RSD 为4.69 % , 测定地质标准物质中铍的结果与鉴定值吻合。点击这里进入下载页面:进入下载页面......阅读全文
火焰原子吸收光谱法的研究背景
背景主要涉及样品前处理和基体改进剂背景吸收主要来源于分子,检测器能分辨原子化了的元素,但如果在该吸收波长附近有未原子化的分子存在,这些吸收就会对元素信号产生干扰,所以选择和控制好你的灰化和原子化温度,有利于消除这些干扰。也可以通过加入基改提高灰化和原子化温度,使得这些分子不在该波长该温度下存在,以降
火焰原子吸收光谱法有哪些特点
火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发
火焰原子吸收光谱法的应用总结
直接原子吸收光谱法可以用来测定周期表中70多种元素,间接原子吸收光谱法可以测定阴离子和有机化合物,该法用来测定同位素的组成、气相中自由原子的浓度、共振线的强度及气相中的原子扩撒系数等。这里总结下火焰原子吸收光谱法的应用。 原子吸收光谱法已广泛应用于地质、冶金、机械、化工、农业、食品、轻工、生物、
火焰原子吸收光谱法有哪些特点
火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发
火焰原子吸收光谱法具有哪些特点
火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。 仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。 火焰原子吸收光谱仪可测定多种元素,火焰原子吸收光谱法可测到
火焰原子吸收光谱法的优缺点
火焰:优点:1、稳定2、重现性好3、背景发射噪声低4、应用较广5、基体效应及记忆效应小缺点:1、原子化效率低(一般低于30%)2、灵敏度低3、液体进行石墨炉:优点:1、灵敏度高(检测限低)2、用量少样品利用率高3、可直接分析固体样品(不常用)和液体样品4、减少化学干扰5、原子化效率高6、设备复杂成本
火焰原子吸收光谱法具有哪些特点
火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。 仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。 火焰原子吸收光谱仪可测定多种元素,火焰原子
火焰原子吸收光谱法的优缺点
火焰:优点:1、稳定2、重现性好3、背景发射噪声低4、应用较广5、基体效应及记忆效应小缺点:1、原子化效率低(一般低于30%)2、灵敏度低3、液体进行石墨炉:优点:1、灵敏度高(检测限低)2、用量少样品利用率高3、可直接分析固体样品(不常用)和液体样品4、减少化学干扰5、原子化效率高6、设备复杂成本
火焰原子吸收光谱法有哪些特点
火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发
火焰原子吸收光谱法有哪些特点
火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发
石磨炉原子吸收光谱法与火焰原子吸收光谱法有何不同
有两点:(1)效率高:石墨炉的原子化效率接近100%,而火焰法的原子化效率只有1%左右.(2)灵敏度高:用石墨炉进行原子化时,基态原子在吸收区内的停留时间较长石墨炉法,检测灵敏度高火焰法稍差火焰法测试的元素多石墨炉法相对少石墨炉属于电加热方式最明显的,进样量石墨炉小.分析速度火焰快.火焰原吸的检测是
石墨炉原子吸收光谱法与火焰原子吸收光谱法有何异同
石墨炉原子吸收光谱仪与火焰原子吸收光谱仪都属于原子吸收光谱仪,由光源、原子化系统、分光系统和检测系统组成。 主要区别在: 1、原子化器不同 火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成。特点:操作简便、重现性好。 石墨炉原子器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩
石墨炉原子吸收光谱法与火焰原子吸收光谱法有何不同
石墨炉分析溶液浓度一般为ug/L级(ppb); 火焰分析溶液浓度一般为mg/L级 (ppm) 石墨炉检测精度比火焰法高,但重复性不如火焰法,所以在火焰法能满足你的检测精度的前提下尽量用火焰法
石墨炉原子吸收光谱法与火焰原子吸收光谱法有何不同
有两点:(1)效率高:石墨炉的原子化效率接近100%,而火焰法的原子化效率只有1%左右. (2)灵敏度高:用石墨炉进行原子化时,基态原子在吸收区内的停留时间较长 石墨炉法,检测灵敏度高 火焰法稍差 火焰法测试的元素多 石墨炉法相对少 石墨炉属于电加热方式 最明显的,进样量石墨炉小.
火焰原子吸收光谱法测定电镀废水中高浓度锡
摘要:采用盐酸消解样品,用火焰原子吸收光谱法测定电镀废水中高浓度的锡的质量浓度,方法简单可靠。通过实验样品的分析,验证了方法的准确度和精密度。该方法干扰少,数据准确,适合废水分析。 关键词:火焰原子吸收光谱法;电镀废水;高浓度的锡锡是人体14种必需的微量元素之一,但它在生物体内的作用尚不太
原子吸收光谱法在石油化工中的应用
摘 要:随着我国石油化工行业的不断发展,要想更好的掌握石油中各类金属元素的含量,就必须采用与之适应的方法对其进行准确的判断。原子吸收光谱法不仅可以对多种金属元素进行准确的判别,而且还能更好的应用于其它领域,这对我国先进技术行业的发展起着巨大的促进作用。 一、前言 随着石油化工行业的需求,
火焰法原子吸收光谱仪中火焰的种类和类型
1、火焰的种类 原子吸收光谱分析中常用的火焰有:空气一乙炔、空气一煤气(丙烷)和一氧化二氮一乙炔等火焰。 (1)空气一乙炔。这是较常用的火焰。此焰温度高(2300℃),乙炔在燃烧过程中产生的半分解物C*、CO*、CH*等活性基因,构成强还原气氛,特别是富燃火焰,具有较好的原子化能力。 (2)空气一煤
火焰法原子吸收光谱仪的基本特性
一、火焰的燃烧特性 着火极限,着火温度和燃烧速度是火焰的燃烧特性,常统称为火焰三要素。对于一个特点的燃气和助燃气混合气体,只有燃气在该混合气体中的百分含量处于某一范围内,燃烧才能开始,并扩展到个混合气体中,形成火焰。此燃气的含量的上下限称为着火极限。在着火极限内,燃烧能够自发地扩展到整个混合气体
火焰法原子吸收光谱仪的基本特性
一、火焰的燃烧特性 着火极限,着火温度和燃烧速度是火焰的燃烧特性,常统称为火焰三要素。对于一个特点的燃气和助燃气混合气体,只有燃气在该混合气体中的百分含量处于某一范围内,燃烧才能开始,并扩展到个混合气体中,形成火焰。此燃气的含量的上下限称为着火极限。在着火极限内,燃烧能够自发地扩展到整个混合气
原子吸收分光光度计火焰的基本特性
一、火焰的燃烧特性 着火极限,着火温度和燃烧速度是火焰的燃烧特性,常统称为火焰三要素。对于一个特点的燃气和助燃气混合气体,只有燃气在该混合气体中的百分含量处于某一范围内,燃烧才能开始,并扩展到个混合气体中,形成火焰。此燃气的含量的上下限称为着火极限。在着火极限内,燃烧能够自发地扩展到整个混合
原子吸收分光光度计火焰的基本特性
一、火焰的燃烧特性 着火极限,着火温度和燃烧速度是火焰的燃烧特性,常统称为火焰三要素。对于一个特点的燃气和助燃气混合气体,只有燃气在该混合气体中的百分含量处于某一范围内,燃烧才能开始,并扩展到个混合气体中,形成火焰。此燃气的含量的上下限称为着火极限。在着火极限内,燃烧能够自发地扩展到整个混合气体
原子吸收分光光度计火焰的基本特性
一、火焰的燃烧特性 着火极限,着火温度和燃烧速度是火焰的燃烧特性,常统称为火焰三要素。对于一个特点的燃气和助燃气混合气体,只有燃气在该混合气体中的百分含量处于某一范围内,燃烧才能开始,并扩展到个混合气体中,形成火焰。此燃气的含量的上下限称为着火极限。在着火极限内,燃烧能够自发地扩展到整个混合
火焰原子吸收光谱法测定工作场所空气中锰的不确定度
【摘要】 目的 建立并运用火焰原子吸收光谱法测定工作场所空气中锰的不确定度评定方法。方法 应用测量不确定度评定方法分析测定过程中不确定度的来源,识别出其中的主要来源。结果 不确定度的主要来源:(1) 采样引入的不确定度;(2)标准溶液配制引入的不确定度;(3) 工作曲线拟合时引入的不确定度;(4)回
哪些元素用火焰原子吸收光谱法测定
很多元素都可以,如:Cu,Zn,Fe,Na,Mg,Cr,K,Ca等.几乎金属都能测,不过检出限不同而已,看你测 的是什么了火焰法能够测试的元素大约有40--50种
火焰原子吸收光谱法测定氧化钾含量
GB/T 1879—1995 火焰原子吸收光谱法Phosphate rock and concentrate Determination of potassium oxide content Flame atomic absorption spectrometric method1 范围 本标准
火焰原子吸收光谱法的干扰有哪些
液相干扰:主要是盐效应,影响雾化效率及提升量,进而影响灵敏度,如测定酱油中的铅,大量氯化钠引入,还造成强的背景吸收。此外,粘度大酸,如硫酸、磷酸等影响雾化效率及提升量。气相干扰:主要是钙在火焰中与磷酸根、铝酸根等生成磷酸钙及尖晶石的分子,在乙炔火焰中由于温度低无法分解,在笑气火焰中则不存在次干扰。干
火焰原子吸收光谱法测回收率?
火焰原子吸收光谱法(FAAS)一般可用于溶液中微量金属元素的定量分析,半微量或常量的稀释后也可以分析。你的结果前面正常,后面的可能有错。若仪器本身工作正常,可考虑以下原因: (1)每一个元素都有各自的空心阴极灯,不能混用; (2)是否有合适的标准工作曲线? 测定样品前首先要做标准工作曲线,可以
非火焰原子吸收光谱法具有哪些特点
非火焰原子吸收光谱法主要指采用石墨管炉(或石墨环、石墨丝及其他金属片或管)作为原子化器的原子吸收光谱法。将被测元素转变为氢化物并送入电加热石英管中班行原子化的氢化物发生一原子吸收光谱法,以及冷原子吸收法测定汞(特点:高灵敏度,选择性好,操作迅速污染小;但样品消解条件比较难控制)也可以认为是
火焰原子吸收光谱法测定水中的镉
一、实验目的 1. 掌握火焰原子吸收光谱仪的操作技术;2. 2. 优化火焰原子吸收光谱法测定水中镉的分析火焰条件;熟 3. 熟悉原子吸收光谱法的应用。 二、方法原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其
火焰原子吸收光谱法测定镉中镍
本方法用火焰原子吸收光谱法测定镉中镍。 本方法适用于镉中镍含量的测定。测定范围为0.01%~0.3%。 2原理 试料以盐酸、过氧化氢分解。在稀盐酸介质中,于原子吸收分光光度计波长232.0nm处,用空气-乙炔火焰测量镍的吸光度。 3试剂 3.1盐酸(ρ1.19g/m