核能部件材料等技术省级重点实验室通过验收

近日,贵州省科技厅组织专家对贵州省核能部件材料及制造技术重点实验室、贵州省超临界流体萃取技术装备重点实验室的建设进行了验收。 贵州省核能部件材料及制造技术重点实验室,由国家创新型试点企业、高新技术企业贵州航天新力铸锻有限责任公司牵头,并联合核工业西南物理研究院等单位共同建设。该重点实验室面向国内核能部件材料及制造技术领域国产化需求,开展核反应堆主设备特种材料及基础构建制造技术前沿研究和产品应用开发,实现该类产品的自主化与产业化,显著提升了核功能部件的材料研发与机械工程制造水平和市场竞争力。建设期内,该重点实验室形成了核电用特种高温合金材料冶炼、中小型基础构建锻造、大型异种金属构件焊接及精密组装、高温合金材料检测等研究方向,以产学研合作方式承担了国家重大科技成果转化项目、省重大工业攻关项目等一批国家和省级重点项目,成功开发应用的精密雷达不锈钢铝双金属复合材料,填补了国内空白;攻克了核反应堆容器主螺栓、核电站蒸汽发生器主蒸......阅读全文

超临界萃取超临界色谱质谱联用检测血液中常见毒物...

超临界萃取-超临界色谱-质谱联用(SFE-SFC-MS)检测血液中常见毒物的应用研究摘  要:建立了一种在线超临界萃取、超临界色谱和质谱联用相结合的检测分析方法。方法取3mm的干斑置于提取器中,上样分析。结果测定6种毒物的线性范围在10~1000ng/mL,回收率均在68.8~110.2之间,检出限

超临界流体萃取与超临界流体色谱有什么关系吗

所谓超临界流体,是指物体处于其临界温度和临界压力以上时的状态.这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能.而且这种溶解能力随着压力的升高而急剧增大.这些特性使得超临界流体成为一种好的萃取剂.而超临界流体萃取,就是利用

超临界流体萃取分离法中萃取剂是什么物质

所谓超临界流体,是指物体处于其临界温度和临界压力以上时的状态.这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能.而且这种溶解能力随着压力的升高而急剧增大.这些特性使得超临界流体成为一种好的萃取剂.而超临界流体萃取,就是利用

超临界流体萃取法的内容是什么?

  定义:采用超临界流体为溶剂对中药材进行萃取的方法  超临界流体(SF):指处于临界温度(Tc)和临界压力(Pc)以上,介于气体和液体之间的、以流动形式存在的单一相态物质。密度与液体相近,而黏度与气体相近,扩散能力强。  萃取选择性的决定因素:温度、压力、夹带剂的种类及含量  常用的提取物质:  

超临界CO2萃取的技术特点

1、超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来;2、使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂

超临界流体萃取在在食品方面的应用

  传统的食用油提取方法是乙烷萃取法,但此法生产的食用油所含溶剂的量难以满足食品管理法的规定, 美国采用超临界二氧化碳萃取法(SCFE)提取豆油获得成功,产品质量大幅度提高,且无污染问题。目前,已经可以用超临界二氧化碳从 葵花籽、 红花籽、 花生、 小麦胚芽、 棕榈、 可可豆中提取油脂,且提出的油脂

超临界流体萃取法的发展和应用

超临界流体是指那些处于超过物质本身的临界压力和临界温度状态的流体。物质的临界状态是指气态和液态共存的一种边缘状态,在此状态中,液态的密度与其饱和蒸气的密度相同,因此界面消失。超临界流体技术的内容涉及超临界流体萃取、超临界条件下的化学反应、超临界流体色谱、超临界流体细胞破碎技术、超临界流体结晶技术等。

关于超临界萃取技术的流体的介绍

  物质是以气、液和固3种形式存在,在不同的压力和温度下可以相的转换。在温度高于某一数值时,任何大的压力均不能使该纯物质由气相转化为液相,此时的温度即被称之为临界温度Tc;而在临界温度下,气体能被液化的最低压力称为临界压力Pc。当物质所处的温度高于临界温度,压力大于临界压力时,该物质处于超临界状态。

超临界CO2萃取的技术应用

超临界CO2萃取的特点决定了其应用范围十分广阔。如在医药工业中,可用于中草药有效成份的提取,热敏性生物制品药物的精制,及脂质类混合物的分离;在食品工业中,啤酒花的提取,色素的提取等;在香料工业中,天然及合成香料的精制;化学工业中混合物的分离等。具体应用可以分为以下几个方面:1、从药用植物中萃取生物活

超临界流体萃取的基本原理

超临界流体萃取是国际上最先进的物理萃取技术,简称SFE(supercritical fluid extraction)。在较低温度下,不断增加气体的压力时,气体会转化成液体,当压力增高时,液体的体积增大,对于某一特定的物质而言总存在一个临界温度(Tc)和临界压力(Pc),高于临界温度和临界压力,物质

关于超临界流体萃取的影响因素分析

  1、萃取压力的影响  萃取压力是SFE最重要的参数之一,萃取温度一定时,压力增大,流体密度增大,溶剂强度增强,溶剂的溶解度就增大。对于不同的物质,其萃取压力有很大的不同。  2、萃取温度的影响  温度对超临界流体溶解能力影响比较复杂,在一定压力下,升高温度被萃取物挥发性增加,这样就增加了被萃取物

超临界流体萃取试验夹带剂的选择

  对于极性较大的溶质,在超临界CO2中溶解较差,SFE很难萃取出来,但若加入一定的夹带剂,以改变溶剂的活性,在一定条件下,就可以萃取出来,而且萃取条件会更低,萃取率更高。常用的夹带剂有甲醇、氯仿等。夹带剂的种类可根据萃取组分的性质来选择,加入的量一般通过实验来确定。  应用自Hanay和Hogar

关于超临界萃取的流体的相关介绍

  物质是以气、液和固3种形式存在,在不同的压力和温度下可以相的转换。在温度高于某一数值时,任何大的压力均不能使该纯物质由 气相转化为液相,此时的温度即被称之为 临界温度Tc;而在临界温度下,气体能被 液化的最低压力称为 临界压力Pc。当物质所处的温度高于临界温度,压力大于 临界压力时,该物质处于超

超临界流体萃取的基本原理

超临界流体萃取是国际上最先进的物理萃取技术,简称SFE(supercritical fluid extraction)。在较低温度下,不断增加气体的压力时,气体会转化成液体,当压力增高时,液体的体积增大,对于某一特定的物质而言总存在一个临界温度(Tc)和临界压力(Pc),高于临界温度和临界压力,

关于超临界CO2萃取的简介

  超临界CO2流体萃取(SFE)是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。  在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可

超临界流体萃取的基本原理

  超临界流体萃取是国际上最先进的物理萃取技术,简称SFE(supercritical fluid extraction)。在较低温度下,不断增加 气体的 压力时,气体会转化成 液体,当压力增高时,液体的体积增大,对于某一特定的物质而言总存在一个 临界温度(Tc)和 临界压力(Pc),高于临界温度和

简述超临界流体萃取的工艺流程

  将需要萃取的植物粉碎,称取约300—700g装入萃取器⑹中,用CO2反复冲洗设备以排除空气。操作时先打开阀⑿及气瓶阀门进气,再启动高压阀⑷升压,当压力升到预定压力时再调节减压阀⑼,调整好分离器⑺内的分离压力,然后打开放空阀⑽接转子流量计测流量通过调节各个阀门,使萃取压力、分离压力及萃取过程中通过

简述超临界流体萃取的工艺流程

  将需要萃取的植物粉碎,称取约300—700g装入萃取器⑹中,用CO2反复冲洗设备以排除空气。操作时先打开阀⑿及气瓶阀门进气,再启动高压阀⑷升压,当压力升到预定压力时再调节减压阀⑼,调整好分离器⑺内的分离压力,然后打开放空阀⑽接转子流量计测流量通过调节各个阀门,使萃取压力、分离压力及萃取过程中通过

超临界流体萃取的临界流体的介绍

  超临界流体(Supercritical Fluid,SF)是处于临界温度(Tc)和临界压力(Pc)以上,介于气体和液体之间的流体。超临界流体具有气体和液体的双重特性。SF的密度和液体相近,粘度与气体相近,但扩散系数约比液体大100倍。由于溶解过程包含分子间的相互 作用和扩散作用,因而SF对许多物

超临界CO2萃取技术的应用

  1、在医药工业中,可用于中草药有效成份的提取,热敏性生物制品药物的精制,及脂质类混合物的分离,可防止中药有效组分的逸散和氧化,过程没有有机溶剂残留,可获得高质量的提取物并提高药用资源的利用率,可大大简化提取分离步骤,能提取分离到一些用传统溶剂法得不到的成分,节约大量的有机溶剂。  (1)红豆杉中

超临界流体萃取夹带剂的特点介绍

  超临界流体技术在萃取和精馏过程中,作为常规分离方法的替代,有许多潜在的应用前景。其优势特点是:  ⑴超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸

超临界流体萃取法基本原理

(1)超临界流体的特性①超临界流体的密度接近于液体。由于溶质在溶剂中的溶解度一般与溶剂的密度成比例,因此超临界流体具有与液体溶剂相当的溶解能力。②超临界流体的扩散系数介于气体与液体之间,其黏度也接近于气体,因而超临界流体的传质速率更接近于气体。所以超临界流体萃取时的传质速率大于液态溶剂的萃取速率。③

超临界流体萃取时夹带剂的选择

夹带剂的选择是一个比较复杂的过程,归纳起来可概括为以下几个方而:⑴充分了解被萃取物的性质及所处环境。被萃取物的性质包括分子结构、分子极性、分子量、分子体积和化学活性等。了解被萃取物所处环境也是非常必要的,它可以指导夹带剂的选择。例如:DHA分布于低极性的甘油脂、中极性的半乳糖酯和极性很大的磷脂中,且

超临界萃取的技术原理、特点和应用

一、超临界萃取的技术原理超临界CO2流体萃取(SFE)分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得

超临界流体萃取技术的发展现状

  超临界流体萃取是指以超临界流体(见p-V-T关系)为溶剂,从固体或液体中萃取可溶组分的分离操作。  最早将 超临界CO2萃取技术应用于大规模生产的是美国通用食品公司,之后法、英、德等国也很快将该技术应用于大规模生产中。90年代初, 中国开始了超临界萃取技术的产业化工作,发展速度很快。实现了 超临

超临界流体萃取技术的工艺流程

将需要萃取的植物粉碎,称取约300—700g装入萃取器(6)中,用CO2反复冲洗设备以排除空气。操作时先打开阀(12)及气瓶阀门进气,再启动高压阀(4)升压,当压力升到预定压力时再调节减压阀(9),调整好分离器(7)内的分离压力,然后打开放空阀(10)接转子流量计测流量通过调节各个阀门,使萃取压力、

超临界萃取人参皂苷及HPLC分析

采用超临界CO2萃取法提取人参中的人参皂苷,通过单因素试验探讨萃取方式、萃取温度、萃取时间、夹带剂用量以及萃取次数对人参皂苷提取率的影响,采用正交试验对超临界CO2萃取人参皂苷的工艺条件进行优化,并采用高效液相色谱法对萃取物中的人参皂苷单体Rg1、Re、Rb1、Rc、Rb2、Rd进行测定。结果表明:

超临界流体萃取法和加速溶剂萃取法的不同

溶剂萃取属于扩散分离,它是依溶质在两相中分配平衡状态的差异实现分离,传质推动力为偏离平衡态的浓度差。构成溶剂萃取两相的两zd溶剂的互溶度要低,否则在相比太高太低时,无法分相,实现选择性分离的作用。溶剂萃取化学属于分离科学的范畴,但值得强调的是,其功能并不仅限于分离这一种作用,而内是集分离(复杂物质)

超临界流体萃取法和加速溶剂萃取法的不同

指出超临界流体萃取法和加速溶剂萃取法的不同之处溶剂萃取属于扩散分离,它是依溶质在两相百中分配平衡状态的差异实现分离,传质推动力为偏离平衡态的浓度差。构成溶剂萃取两相的两溶剂的互溶度要低,否则在相比太高太低时,无法分相,实现度选择性分离的作用。溶剂萃取化学属于分离科学的范畴,但值得强调的是,其功能并不

超临界CO2萃取技术在中草药萃取上的应用

摘要:综述了超临界CO2萃取技术在中草药萃取上的应用现状,总结了该技术在应用中的优缺点及其产业化遇到的问题。关键词:超临界CO2萃取技术; 中草药; 萃取中图分类号:R284.2  文献标识码:B文章编号:1008-0805(2000)12-1137-02  超临界流体萃取(Supercritica