我国高精度纳米分辨率线位移测量技术获新突破

近日从吉林省科技厅了解到,由长春光机所承担的应用基础研究项目——“高精度纳米分辨率线位移测量技术研究”,日前在长春通过专家鉴定。鉴定委员会专家一致认为,该项研究所制成的高精度纳米测量传感器样机达到四倍光学倍频,技术指标达到国际先进水平。 据介绍,线位移尺寸测量是精密加工制造业的基础之一。随着被加工对象加工精度的提高,位移测量仪器必须具有高精度、高分辨率、大量程、体积小、重量轻等特点。市场上的光栅尺、感应同步器、磁栅等传感器生产厂家众多,这些厂家生产的传感器结构简单、价格低,但分辨率仅在1mm~0.5mm,远不能满足要求。此外,少数加工中心使用的双频激光干涉仪多是进口或仅有少数国内科研单位单件研制,虽然其精度高,分辨率可达0.01mm,但也有结构复杂、体积庞大、价格高、对环境要求苛刻、稳定性较差等缺点。 &nbs......阅读全文

光学分辨率的定义

光学分辨率是指扫描仪物理器件所具有的真实分辨率。

布鲁克三维光学轮廓仪在光学领域的一些应用

   光学元件在各个领域都有广泛应用,对光学元件的表面加工精度提出越来越高的要求。如何检测光学元件的加工精度,从而用于优化加工方法,保证最终元器件的性能指标,是光学元件加工领域的关键问题之一。    光学元件的加工精度包括表面质量和面型精度,这些参数会影响其对光信号的传播,进而影响最终器件的性能。

布鲁克三维光学轮廓仪在光学领域的一些应用

    光学元件在各个领域都有广泛应用,对光学元件的表面加工精度提出越来越高的要求。如何检测光学元件的加工精度,从而用于优化加工方法,保证最终元器件的性能指标,是光学元件加工领域的关键问题之一。      光学元件的加工精度包括表面质量和面型精度,这些参数会影响其对光信号的传播,进而影响最终

布鲁克三维光学轮廓仪在光学领域的一些应用

   光学元件在各个领域都有广泛应用,对光学元件的表面加工精度提出越来越高的要求。如何检测光学元件的加工精度,从而用于优化加工方法,保证最终元器件的性能指标,是光学元件加工领域的关键问题之一。    光学元件的加工精度包括表面质量和面型精度,这些参数会影响其对光信号的传播,进而影响最终器件的性能。

关于光学干涉仪的历史故事

  1704年 ,牛顿的《光学》一书问世,在本书中牛顿认为,光是沿直线高速传播的粒子流。而此种观点恰好同同期的物理学家惠更斯的猜想所不同。  1690年 ,惠更斯的《论光》一书正式出版,本书中惠更斯认为光是一种波,并提出了光波动原理,即惠更斯原理。  此原理可以阐述为:任何时刻一个点波源的球面波面上

激光干涉测量的方法特点

中文名称激光干涉测量英文名称laser interferometry定  义以激光为光源,以激光波长或激光频率为基准,利用光的干涉原理进行精密测量的方法。应用学科机械工程(一级学科),光学仪器(二级学科),激光器件和激光设备-激光应用(三级学科)

激光干涉测量的应用特点

中文名称激光干涉测量英文名称laser interferometry定  义以激光为光源,以激光波长或激光频率为基准,利用光的干涉原理进行精密测量的方法。应用学科机械工程(一级学科),光学仪器(二级学科),激光器件和激光设备-激光应用(三级学科)

如何提高X荧光光谱仪的分辨率

 光谱分辨率为探测光谱辐射能量的小波长间隔,而确切的讲,为光谱探测能力。它是仪器对于紧密相邻的峰可以分辨的小波长差值,表示仪器实际分开相邻峰的能力,即ν/△ν或(λ/△λ),ν为两峰中任一峰的波数,△ν为两峰波数之差。光谱仪分辨率又称波段宽度,它是指探测器在波长方向上的记录宽度,又称波段宽度(ban

近场光学技术的应用

基于近场光学技术的光学分辨率可以达到纳米量级,突破了传统光学的分辨率衍射极限,这将为科学研究的诸多领域,尤其是纳米科技的发展提供有力的操作、测量方法和仪器系统。目前,基于隐失场探测的近场扫描光学显微镜、近场光谱仪已经在物理、生物、化学、材料科学等领域中得到应用,并且应用范围正在不断地扩大;而基于近场

使用技巧绕过显微镜的衍射极限

来自德累斯顿和维尔茨堡的物理学家们使用小点来移动杆表面 - 以解决光学显微镜的分辨率限制问题。使用他们的新方法,它使用生物电机和荧光纳米粒子,他们产生超高分辨率的图像。 常规光学显微镜的分辨率由光衍射的基本物理原理不限于光的大约一半的波长:如果两个对象之间的距离小于这所谓的“衍射极限”,它们可以

光学显微镜与电子显微镜的区别

电子显微镜和光学显微镜的区别主要有以下四点:一、光源不同光学显微镜采用可见光作为光源,电子显微镜采用电子束作为光源。二、成像原理不同光学显微镜利用几何光学成像原理进行成像,电子显微镜利用高能量电子束轰击样品表面,激发出样品表面的各种物理信号,再利用不同的信号探测器接受物理信号转换成图像信息。三、分辨

AFM光学测量

光学测量突破光学衍射极限实现纳米级的光学成像与探测,一直是光学技术发展的前沿。2014 年诺贝尔化学奖授予了突破光学衍射极限的超分辨光学显微成像技术,包括受激发射损耗显微术、光敏定位显微术、随机光学重建显微术、饱和结构照明显微技术等。将AFM与光学技术结合起来,可以研究微纳米尺度下的光学现象和进行光

金相显微镜与扫描电镜的区别二

金相显微镜与光学显微镜存在很大的区别,主要有以下几方面:  一、光源不同:金相显微镜采用可见光作为光源,扫描电镜采用电子束作为光源成像。  二、原理不同:金相显微镜利用几何光学成像原理进行成像,扫描电镜利用高能量电子束轰击样品表面,激发出样品表面的各种物理信号,再利用不同的信号探测器接受物理信号转换

激光干涉仪的发展历史

  1604年开普勒(J.Kepler)写出光学著作,指出光的强度和到达光源距离的平方成反比。并于1611年出版《折射光学》。  1801年托马斯•杨(Thomas Young)用双狭缝实验演示了光的干涉现象,即著名的杨氏双缝实验。  1881年迈克尔逊(Albert.A.Michelson)设计了

共聚焦轮廓仪

产品名称:共聚焦轮廓仪产品型号:PZ-3010D产品简介:使用sensofar有技术开发的Neox光学轮廓仪,集成了共聚焦计数和干涉测量技术,并具有薄膜测量能力,该系统可以用于标准的明场彩色显微成像,共焦成像,三维共焦建模,PSI、VSI及高分辨率薄膜厚度测量。产品概述&参数产品特点:共聚焦轮廓仪使

光学超分辨显微成像重大突破!分辨率提高到100纳米以下

  近日,哈尔滨工业大学仪器学院现代显微仪器研究所在光学超分辨显微成像技术领域取得突破性进展。研究团队在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,实现了长时程、超快速、活细胞超分辨成像。11月16日,研究成果以《稀疏解卷积增强活细胞超分辨荧光显微镜的分辨率》(Sparse d

金相显微镜与扫描电镜的区别

一、光源不同:金相显微镜采用可见光作为光源,扫描电镜采用电子束作为光源成像。二、原理不同:金相显微镜利用几何光学成像原理进行成像,扫描电镜利用高能量电子束轰击样品表面,激发出样品表面的各种物理信号,再利用不同的信号探测器接受物理信号转换成图像信息。三、分辨率:金相显微镜因为光的干涉与衍射作用,分辨率

三维光学轮廓仪的使用原理

三维光学轮廓仪采用白光轴向色差原理(性能优于白光干涉轮廓仪与激光干涉轮廓仪)对样品表面进行快速、重复性高、高分辨率的三维测量,测量范围可从纳米级粗糙度到毫米级的表面形貌,台阶高度,给MEMS、半导体材料、太阳能电池、医疗工程、制药、生物材料,光学元件、陶瓷和先进材料的研发和生产提供了一个精确的、价格

如何提高光谱仪的分辨率?

  1、什么是光谱仪分辨率  光谱分辨率为探测光谱辐射能量的小波长间隔,而确切的讲,为光谱探测能力。它是仪器对于紧密相邻的峰可以分辨的小波长差值,表示仪器实际分开相邻峰的能力,即ν/△ν或(λ/△λ),ν为两峰中任一峰的波数,△ν为两峰波数之差。光谱仪分辨率又称波段宽度,它是指探测器在波长方向上的记

尼康显微镜和扫描电镜的对比不容错过!

1.光源  尼康显微镜采用可见光作为光源,电子显微镜采用电子束作为光源。  2.分辨率  尼康显微镜因为光的干涉与衍射作用,分辨率只能局限于0.2-0.5um之间。电子显微镜因为采用电子束作为光源,其分辨率可达到1-3nm之间,因此尼康显微镜的组织观察属于微米级分析,电子显微镜的组织观测属于纳米级分

干福熹:突破衍射极限的研究待加强

  “目前,信息技术已经进入纳米时代,其中纳米光学和光子学的发展尤为重要,例如在纳米光刻、纳米成像和纳米信息存储等信息技术中,都有很重要的应用。”   在近日于上海举行的以“突破光学衍射极限的机制及应用”为主题的第188期东方科技论坛上,中科院院士干福熹在题为《突破光学衍射极限,发展纳米光学和光子

上海光机所联手交大实现多色光纤束无透镜衍射成像

  近日,中国科学院上海光学精密机械研究所(以下简称上海光机所)高功率激光物理联合实验室与上海交通大学智能光子学研究中心合作,基于古希腊梯子光子筛的色散等效操作,利用多色光纤束自补偿实现了高分辨的无透镜衍射成像。相关成果发表于《光学快报》。  干涉法和衍射法都能够有效重构待测物体的复振幅信息。干涉法

两种显微镜存在很大的区别

两种显微镜存在很大的区别,主要有以下几方面:一、光源不同:金相显微镜采用可见光作为光源,扫描电镜采用电子束作为光源成像。二、原理不同:金相显微镜利用几何光学成像原理进行成像,扫描电镜利用高能量电子束轰击样品表面,激发出样品表面的各种物理信号,再利用不同的信号探测器接受物理信号转换成图像信息。三、分辨

两种显微镜存在很大的区别,主要有以下几方面

两种显微镜存在很大的区别,主要有以下几方面:一、光源不同:金相显微镜采用可见光作为光源,扫描电镜采用电子束作为光源成像。二、原理不同:金相显微镜利用几何光学成像原理进行成像,扫描电镜利用高能量电子束轰击样品表面,激发出样品表面的各种物理信号,再利用不同的信号探测器接受物理信号转换成图像信息。三、分辨

近场光学显微镜与远场显微镜有什么不同

      什么是近场光学显微镜?     80年代以来, 随着科学与技术向小尺度与低维空间的推进与扫描探针显微技术的发展,在光学领域中出现了一个新型交叉学科——近场光学。近场光学对传统的光学分辨极限产生了革命性的突破。新型的近场光学显微镜 ( NSOM——Near-field Scanning O

沈阳自动化所研发扫描微透镜超分辨成像技术

  纳米尺度实时视觉反馈、免标记成像技术对于机器人在纳米尺度操作、检测具有重要意义。中国科学院沈阳自动化研究所机器人学国家重点实验室微纳米课题组结合微纳光学、机器人学和自动化技术,在物理学突破的基础上,成功研发了具有实时视觉反馈能力的扫描微透镜超分辨成像技术(Scanning Superlens M

斐索干涉仪——光学测试仪器

   斐索干涉仪是一种原理为等厚干涉,用以检测光学元件的面形、光学镜头的波面像差以及光学材料均匀性等的精密仪器。其测量精度一般为/10~/100,为检测用光源的平均波长。   斐索干涉仪原理为等厚干涉,用以检测光学元件的面形、光学镜头的波面像差以及光学材料均匀性等的一种精密仪器。其测量精度一般为/1

光学分辨率的应用特点

光学分辨率是指扫描仪物理器件所具有的真实分辨率。而且,扫描仪的光学分辨率是用两个数字相乘,如600*1200线,其中前一个数字代表扫描仪的横向分辨率,例如一个具有5000个感光单元的CCD器件,用于A4幅面扫描仪,由于A4幅面的纸张宽度是8.3英寸,所以,该扫描仪的光学分辨率就是5000/8.3=6

光学分辨率的主要应用

光学分辨率是指扫描仪物理器件所具有的真实分辨率。而且,扫描仪的光学分辨率是用两个数字相乘,如600*1200线,其中前一个数字代表扫描仪的横向分辨率,例如一个具有5000个感光单元的CCD器件,用于A4幅面扫描仪,由于A4幅面的纸张宽度是8.3英寸,所以,该扫描仪的光学分辨率就是5000/8.3=6

X射线衍射光学部件的制备及其光学性能表征(四)

3 X射线光学表征3.1 100 nm分辨率波带片的聚焦特性100 nm波带片的光学聚焦特性在上海光源同步辐射BL15U1线站进行了光学表征。图 22是光学测试系统(图 22(a))和光路示意图(图 22(b))。X射线的能量是10 keV,波带片的第一环直径为3.46 μm,总共有300个波带