人工模拟光合作用将用于解决能源匮乏问题

据每日科学网报道,近日,美国科学家们在光合作用研究方面取得重大突破。在不久的将来,科学家或许可以制造人工合成装置,以吸收大气中过多二氧化碳并释放出氧气,同时还能产生出人们所需要的能量,在实现环保的同时还能解决能源供应问题。 此外,科学家还首次探明了色素复合蛋白体在植物光合作用的过程中所起到的关键作用,可以说这一系列生物能源方面的最新发现,是生物学研究领域里具有里程碑意义的又一重大突破。 据报道,来自美国加利福尼亚大学伯克利分校的科学家们对光合作用进行了深入的研究。在这次的研究过程中,科学家们以先进的激光技术为基础,利用最先进的“两维电子光谱”,首次成功的模拟了光合作用的全部过程,观察到了植物体内光合作用所产生的能量传导过程,也解开了植物是如何利用光来产生能量的秘密。由于这些能量在色素蛋白复合体控制下的传导过程中十分复杂,从而这一次的科学研究的成功也显得极为不易。 这项研究工作的负责人,格雷厄姆—弗莱......阅读全文

光合作用的类型介绍

光反应阶段图3光合作用过程图解光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。反应式:暗反应阶段暗反应阶段是利用光反

光合作用的碳同化

CO2同化(CO2assimilation)是光合作用过程中的一个重要方面。碳同化是通过和所推动的一系列CO2同化过程,把CO2变成糖类等有机物质。高等植物固定CO2的生化途径有3条:卡尔文循环、C4途径和景天酸代谢途径。其中以卡尔文循环为最基本的途径,同时,也只有这条途径才具备合成淀粉等产物的能力

光合作用曲线移动规律

光合作用效率随光照强度的变化规律.一般来说,光合速率随光强增强逐渐增大;当光强达到一定强度后,由于用于吸收光量子的天线色素已经处于饱和状态,光合速率将达到稳定,不再继续增大;当光强继续增大时,叶片为避免受强光照而使细胞受损,会采取一定应对措施如关闭气孔,导致光合速率有所降低.

最早的光合作用介绍

1990年,一种红藻化石在加拿大北极地区被发现,这种红藻是地球上已知的第一种有性繁殖物种,也被认为是已发现的现代动植物最古老祖先。对红藻化石的年龄此前没有形成统一看法,多数观点认为它们生活在距今约12亿年前。为了确定这种红藻化石的年龄,研究人员专门到加拿大巴芬岛收集包含这种红藻化石的黑页岩并用铼锇同

光合作用原初反应过程

在共振传递过程中,供体和受体分子可以是同种,也可以是异种分子。分子既无光的发射也无光的吸收。通过上述色素分子间的能量传递,聚光色素吸收的光能会很快到达并激发反应中心色素分子,启动光化学反应。光合作用的能量吸收、传递与转换的关系。光合作用原初反应的能量吸收、传递与转换图解粗的波浪箭头是光能的吸收,细的

太空探索——人工光合作用

太空探索和未来的能源策略其实具有一个非常相似的长期目标,即可持续性。许多科学家认为,人工光合作用装置很可能成为实现这一目标的关键部分。在一篇新发表在《自然·通讯》上的论文中,一个科学家团队评估了一种利用了光合作用过程中的一些优势而发展的技术。他们的分析结果表明,人工光合作用或将是帮助人类实现在其他星

光合作用的功能意义

将太阳能变为化学能植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。每年光合作用所同化的太阳能约为人类所需能量的10倍。有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。因此可以说,光合作用提供今天的主要能源。绿色植物是一

有关光合作用的简述

  1、什么是光合作用:  绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物(如淀粉),并且释放出氧的过程,就叫光合作用。  2、光合作用的意义:  (1)光合作用制造的有机物,不仅是绿色植物自身的营养物质,而且是动物和人的食物来源,以及多种工业原料(如棉、麻、糖、橡胶等)的来源

光合作用的生物介绍

C3类植物通过C3途径固定CO2的植物称为C3植物,它们行光合作用所得的淀粉会贮存在叶肉细胞中,因为这是卡尔文循环的场所。C3类植物属于高光呼吸植物类型,光合速率较低,其种类多,分布广,多生长于暖湿条件,如大多数树木、植物类粮食、烟草等。 C4类植物通过C4途径固定CO2的植物称为C4植物,它们主要

磷钾肥的光合作用

  缺钾使光合作用减弱。钾能明显地提高植物对氮的吸收和利用,并很快转化为蛋白质。钾还能促进植物经济用水。由于钾离子能较多地累积在作物细胞之中,因此使细胞渗透压增加并使水分从低浓度的土壤溶液中向高浓度的根细胞中移动。在钾供应充足时,作物能有效地利用水分,并保持在体内,减少水分的蒸腾作用。钾的另一特点是

水生植物光合作用

1、水生植物有沉水植物、浮水植物和挺水植物.后两者通过空气中的叶子吸收二氧化碳进行光合作用.2、沉水植物能吸收溶解在水中的二氧化碳进行光合作用.3、碳酸会有一个分解合成平衡.碳酸—水+二氧化碳,当水中的二氧化碳浓度下降时,平衡向右移动,释放二氧化碳.

影响光合作用的因素

植物的光合作用受内外因素的影响,而衡量内外因素对光合作用影响程度的常用指标是光合速率(photosynthetic rate)。一、光合速率及表示单位 光合速率通常是指单位时间、单位叶面积的CO2吸收量或O2的释放量,也可用单位时间、单位叶面积上的干物质积累量来表示。常用单位有:μmol CO2

什么是光合作用中心?

光合作用中心,也称反应中心, [6]  是进行原初反应的最基本的色素蛋白结构。其至少包括一个光能转换色素分子(P)、一个原初电子受体(A)和一个原初电子供体(D),才能导致电荷分离,将光能转换为电能,并且累积起来。光合作用中心可以认为是光能转换的基本单位。

植物群体光合作用测量

光合作用的测量已经进入“群体(冠层)测量”的时代,单个叶片的测量已经远远不能满足实际需求。“群体(冠层)测量”+“自动监测”才是光合作用测量的发展趋势。“群体叶绿素荧光”+“多通道群体气体交换”组成了完美的群体光合作用测量方案。光合作用是植物最重要的代谢途径之一,被称为地球上最重要的化学反应。对植物

光合作用的反应过程

光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:①原初反应,包括光能的吸收、传递和转换;②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);③碳

如何用光合作用测定仪测量拟南芥叶片的光合作用?

在过去的几年业务咨询中,不断有客户来电咨询如何利用气体交换法测定拟南芥叶片的光合作用参数。 对于这个问题,从测量原理上来讲拟南芥叶片(或类似的小叶片样品)和其它植物叶片的测量没有本质上的差异。关键的难点是如何解决拟南芥叶片过小的问题。叶片太小会带来的问题是;1一次只测一个小叶片,由于面积太小(小于1

通过光合作用测定仪对植物的光合作用效果进行有效测定

  光合作用测定仪助力设施农业的发展,设施农业指的是在可控的环境条件下,使用一些技术手段,实现植物有效生产的现代农业生产方式。当前设施农业在全过范围内大力推广,在农业领域,设施农业在对于作物生长过程中需要的光照、水分、温度、土壤环境的研究已经步入科技先进的水平,光合作用测定仪在帮助其研究的重要仪器之

植物光合作用测定仪研究干旱高温对胡杨光合作用影响

植物生长需要阳光、水和适宜的温度,这是我们大家都知道的,而干旱、高温等恶劣环境对植物是有一定的影响的,影响的程度视情况而定,但是光合作用是植物积累养分的重要过程,因此利用植物光合作用测定仪研究干旱高温对植物光合作用的影响,可以探究植物在干旱高温下的适应性机理,为干旱和半干旱地区生态系统修复提供重要的

植物光合作用测量系统概述

  随着植物光合作用研究的深入和现代光合测定 系统的推广 ,越来越多的植物学科如农学、林学 、植物生理学 、植物生态学 、园艺学和遗传学 的研究均涉及到叶片光合作用的测定 。而净光合速率是衡量绿色植物光合能力大小的一个重要指标 。  植物光合测量系统可以测定气体CO2浓度、空气温湿度,叶片温度,光合

光合作用的反应阶段介绍

光反应阶段图3光合作用过程图解光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。反应式:暗反应阶段暗反应阶段是利用光反

光合作用的内部影响因素

1. 不同部位在一定范围内,叶绿素含量越多,光合越强。以一片叶子为例,最幼嫩的叶片光合速率低,随着叶子成长,光合速率不断加强,达到高峰,随后叶子衰老,光合速率就下降。2. 不同生育期株作物不同生育期的光合速率不尽相同,一般都以营养生长期为最强,到生长末期就下降。以水稻为例,分蘖盛期的光合速率较快,在

光合作用的原初反应介绍

  光合作用的第一幕是原初反应(primary reaction)。它是指光合作用中从叶绿素分子受光激发到引起第一个光化学反应为止的过程,其中包含色素分子对光能的吸收、传递和转换的过程。两个光系统(PSⅠ和PSⅡ)均参加原初反应。 [6]  当波长范围为400 ~ 700 nm的可见光照射到绿色植物

概述光合作用的反应过程

  光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:  ①原初反应,包括光能的吸收、传递和转换;  ②电子传递和光合磷酸化,形成活跃化学能(ATP和NAD

氧气浓度影响光合作用吗

有影响,光和作用需要二氧化碳,二氧化碳是光合作用的原料,因此增加二氧化碳浓度,会增强光合作用效率;增加氧气浓度,会使呼吸作用增强,消耗的有机物增多,会使产量降低

植物光合作用测定系统简介

  植物光合作用测定系统是一种用于地球科学领域的分析仪器,于2015年11月02日启用。  技术指标  大小:40.6L x 57.2W x 21.1H cm;4个LED指示器;5个7-segment LED显示器;多路器覆盖区域:多路器到测量室最大半径15.0m,测量圆周的最大直径30.0m;。 

植物光合作用测定仪

  1、多功能  同时测定光合速率、蒸腾速率、胞间二氧化碳浓度、气孔导度和水分利用效率,以及二氧化碳浓度、相对湿度、光合有效辐射和空气温度、叶片温度十项指标  2、稳定性  加入了温度调节的双波长红外二氧化碳分析器,二氧化碳测量精度不受温度变化影响,而且具有稳定、精度高,反映灵敏等特点,1秒钟之内就

《科学》:MIT成功模拟光合作用

产生新能源可代替石油 据国外媒体报道,美国麻省理工大学(MIT)的科学家日前在实验室内再现了光合作用的过程,在整个过程中光合作用将水分解成氢和氧,并产生了可供燃烧的氢气和氧气。该实验的意义在于光合作用产生的能量能够被人类利用,这种技术将引发一场太阳能使用革命,并补偿煤炭,石油等不可再生资源的损耗。

光合作用的研究进展

17世纪以前,普遍认为植物生长所需的全部元素是从土壤中获得的。17世纪中叶,荷兰科学家Van Helmont进行了柳树盆栽实验。连续5年只浇水,柳树重量增加了75 kg,土壤质量只减少了60 g。因此,他错误地认为柳树生长所需的物质主要不是来自土壤,而是来自灌溉土壤的水。1771年,英国牧师、化学家

提高光合作用效率的措施

提高光合作用效率的措施比较多,下面简介其中的一种:适当增加CO2的含量。我们知道,空气中CO2的含量一般是330mg/L,这与农作物进行光合作用时最适的CO2含量(1000mg/L)相差甚远,特别是在密植栽种、肥多水多的情况下,农作物需要的CO2就更多。显然,只靠空气中CO2的含量差所形成的扩散作用

关于光合作用的意义介绍

  将太阳能变为化学能  植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。每年光合作用所同化的太阳能约为人类所需能量的10倍。有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。因此可以说,光合作用提供今天的主要能源。绿色