Antpedia LOGO WIKI资讯

赝能隙或是高温超导体的新相位

通过多年的观察,美国纽约州立大学宾汉姆顿学院物理学家迈克尔·劳勒和同事找到了解开高温超导领域所谓“赝能隙”现象的关键“钥匙”。“赝能隙”或许是高温超导物质的另外一个相位(phase)。新发现或将推进室温超导研究的发展。 高温超导是指材料在某个相对较高的临界温度,电阻突降至零。科学家一直认为,超导体只能在极低的温度下才能导电,然而,1986年科学家发现了第一种高温超导材料——镧钡铜氧化物。自那以后,铜基超导材料成为全世界物理学家的研究热点。 高温铜氧化物超导体的一个长久未解之谜是“赝能隙”。“赝能隙”自从1989年被发现后,有关它的起源以及与超导之间的关系就一直是研究高温超导机理问题的核心。 所谓“赝能隙”现象,是指低能电子激发在高温超导物质中消失的现象,一种经历过这种罕见现象的物质将变得相当绝缘,但是,在其他方面却同超导体一样。因为这种现象可以在室温下发生,科学家相信,超导性可能也可以在室温......阅读全文

赝能隙或是高温超导体的新相位

  通过多年的观察,美国纽约州立大学宾汉姆顿学院物理学家迈克尔·劳勒和同事找到了解开高温超导领域所谓“赝能隙”现象的关键“钥匙”。“赝能隙”或许是高温超导物质的另外一个相位(phase)。新发现或将推进室温超导研究的发展。   高温超导是指材料在某个相对较高的临界温度,电阻突降至零

赝能隙会“抢走”高温超导体中的电子 减弱其超导性

  美国科学家发现了物质的神秘状态赝能隙与高温超导性相互竞争的首个直接证据:赝能隙“抢走”了高温超导体中的电子——这些电子本来可以配对并以百分之百的效率让电流通过超导材料。这项研究由斯坦福大学和美国能源部斯坦福直线加速器中心的科研人员主导,研究结果近日发表在《自然·材料》中。  上世纪90年代中期,

铁基高温超导体电子结构与超导能隙研究取得新进展

  2008年发现的铁基超导体其超导转变温度最高可达55K,是继1986年发现的铜氧化物高温超导体之后发现的第二类新的高温超导体系。它的发现,为高温超导电性的研究开辟了一个新的方向。与铜氧化物高温超导体的研究类似,铁基超导体研究的核心问题是理解其高温超导电性产生的机理。对材料电子结构

物理所等在铜基高温超导体中发现新颖电荷有序态

  电子具有自旋和电荷两个重要特性。铜氧化物高温超导是通过掺杂破坏自旋有序态(反铁磁有序)而实现的。在过去30年里,高温超导机制的研究主要集中在对自旋行为的理解,缺乏对电荷功能的认识。  近日,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)郑国庆研究组利用物理所的15特斯拉强磁场核磁共振装置,

清华朱静院士团队在超导领域取得“重大突破”

原文地址:http://news.sciencenet.cn/htmlnews/2023/2/494431.shtm2017年, 中科院院士、清华大学教授朱静进入了一个她不熟悉的超导材料研究领域。在近十年的测定量子材料序参量的电子显微学方法研究基础上,朱静团队在超导材料中获得了一些重要发现。2023

超导“小时代”(26):山重水复疑无路

众里寻他千百度,蓦然回首,那人却在,灯火阑珊处。                                  ——南宋·辛弃疾的《青玉案·元夕》   图1:孙文勃画作《山重水复》(来自sunwenbo.artron.net)话说,行走江湖,身不由己。最担心受怕的,一是遇到熟人,不知如何是好;二

高温超导材料在超导储能装置方面的应用介绍

  超导储能装置是利用超导线圈将电磁能直接储存起来,需要时再将电磁能返回电网或其他负载的一种电力设施。由于储能线圈由超导线绕制且维持在超导态,线圈中所储能几乎无损耗地永久储存下去直到需要释放时为止。超导储能装置不仅可用于调节电力系统的峰谷或解决电网瞬间断电对用电设备的影响,而且可用于降低或消除电网的

高压下铜氧化物超导体的2D-3D超导态跃变研究获进展

  自1986年发现铜氧化物高温超导体以来,人们从实验和理论方面对其开展了广泛的研究,取得了许多重大研究成果,但仍未实现对高温超导电性全面、统一的理解,高温超导机理的破解仍被列为二十一世纪凝聚态物理研究的重大挑战之一,人们期待着能在正确理论指导下发现具有更高超导转变温度且更适于应用的超导体。空穴掺杂

我国学者揭示压力下铜氧化物超导体的2D-3D超导态跃变

  自1986年发现铜氧化物高温超导体以来,人们从实验和理论方面对其开展了广泛的研究,取得了许多重大研究成果,但仍未实现对高温超导电性全面、统一的理解,高温超导机理的破解仍被列为二十一世纪凝聚态物理研究的重大挑战之一,人们期待着能在正确理论指导下发现具有更高超导转变温度且更适于应用的超导体。空穴掺杂

物理所铜氧化合高温超导体中绝缘-超导体转变研究获进展

  铜氧化物高温超导体的母体是反铁磁莫特绝缘体, 高温超导电性的产生通过掺杂适当数量的载流子得以实现。介于母体和超导体之间,存在一个特殊而重要的过渡区,即所谓的重欠掺杂区域。在这个特定的区域, 少量的载流子掺杂使得三维反铁磁长程序被迅速压制,并且发生绝缘体-金属/超导体转变。这个区域的电子结