端粒是由非编码DNA组成的染色体末端。当正常细胞分裂时,它们的端粒会变短,直到细胞不能再分裂。然而,癌细胞可以保持其端粒的长度,通过激活两种过程---端粒酶或端粒延伸替代(alternative lengthening of telomeres, ALT)通路---中的一种来无限期地延长其寿命。

  在一项新的研究中,来自美国凯斯西储大学和克利夫兰诊所的研究人员确定了端粒调节肿瘤的侵袭性和生存的新方式,使它们成为用来杀死癌症的潜在脆弱的治疗靶点。这一发现是他们在研究癌细胞在疾病发展和对治疗的反应过程中如何切换端粒调节和维持机制时做出的。相关研究结果近期发表在Science Signaling期刊上,论文标题为“SLX4IP promotes RAP1 SUMOylation by PIAS1 to coordinate telomere maintenance through NF-κB and Notch signaling”。论文通讯作者为凯斯西储大学凯斯综合癌症中心的William Schiemann教授。

  在这项研究中,Schiemann及其团队描绘了一种调控ALT的途径--这一机制以前并没有被很好地理解。此外,该团队发现这种调控ALT的机制不仅监视端粒长度,而且还在细胞质中发挥作用,调节与疾病进展、癌症干细胞和化疗抗性有关的信号通路。他们的发现使他们相信有可能靶向这种新途径来缓解不同的癌症。

  具体而言,这些作者发现端粒相关蛋白SLX4IP通过招募E3 SUMO连接酶PIAS1到SLX4复合物上并激活PIAS1来决定端粒蛋白质组的组成。PIAS1将端粒结合蛋白RAP1进行SUMO化修饰,这破坏了它与端粒结合蛋白TRF2的相互作用,并促进了它的核质穿梭(nucleocytoplasmic shuttling)。在细胞质中,RAP1与IκB激酶(IKK)结合,导致转录因子NF-κB的激活及其对Jagged-1表达的诱导,从而促进Notch信号传导和ALT激活。在ALT驱动的癌症中,以及在对抗端粒酶疗法产生抗性的肿瘤细胞中,这一途径可称为治疗靶标。这些结果阐明了SLX4IP依赖的端粒可塑性的机制,并证明了端粒蛋白在直接协调细胞内信号传导和端粒维持动态中的作用。

  Schiemann说,“这可能是一个独特的机会,以一种基于肿瘤主要维持机制的方法来治疗它,知道当它产生抗性并转向另一种维持机制时,我们将能够用高效的治疗方法打击它。”

  这可能是一个独特的机会,以一种基于肿瘤主要维持机制的方法来治疗肿瘤,知道当它们产生耐药性并转向其他维持机制时,我们将能够用高效的治疗打击它们。

  尽管这项研究仍处于实验室调查阶段,但Schiemann说,在未来,他希望进入概念验证的1期临床试验,以测试患者对这些抑制剂的敏感性。理想情况下,Schiemann说,治疗性靶向端粒维持机制,特别是在辅助治疗的情况下,有可能消除疾病复发和转移性复发。

  参考资料:

  Nathaniel J. Robinson et al. SLX4IP promotes RAP1 SUMOylation by PIAS1 to coordinate telomere maintenance through NF-κB and Notch signaling. Science Signaling, 2021, doi:10.1126/scisignal.abe9613.


相关文章

NatureAging:肠道特异性端粒酶可延长端粒并延缓全身衰老

端粒是真核细胞线性染色体的末端结构,在细胞复制过程中起保护作用,避免DNA受到损伤,并且像帽子一样有效防止染色体间末端重组、融合和染色体退化。在细胞有丝分裂的过程中,端粒会随着分裂次数的增加逐渐缩短,......

Science子刊:揭示一种调节癌细胞端粒维持长度的新机制

端粒是由非编码DNA组成的染色体末端。当正常细胞分裂时,它们的端粒会变短,直到细胞不能再分裂。然而,癌细胞可以保持其端粒的长度,通过激活两种过程---端粒酶或端粒延伸替代(alternativelen......

Science子刊:揭示一种调节癌细胞端粒维持长度的新机制

端粒是由非编码DNA组成的染色体末端。当正常细胞分裂时,它们的端粒会变短,直到细胞不能再分裂。然而,癌细胞可以保持其端粒的长度,通过激活两种过程---端粒酶或端粒延伸替代(alternativelen......

端粒酶研究领域的重要成果!

本文中,小编整理了多篇研究报告,共同聚焦科学家们在端粒酶研究领域取得的重要成果,分享给大家!图片来源:Vimeo【1】PNAS:促进癌症的端粒酶也能保护健康细胞doi:10.1073/pnas.190......

颠覆!09诺奖成果端粒酶变身抗癌神器!

时光拨回2009年。2009年诺贝尔评审委员会奖当年的诺贝尔生理或医学奖颁给了端粒及端粒酶的发现者们。这项研究当时获奖的主要原因是因为其研究结果有助于人们理解衰老过程遗传信息发生变化的机制。在9年后,......

揭开恶性脑瘤“长生不老”的秘密:可能源于基因突变

  今日,在《CancerCell》期刊上发表的研究中,加州大学旧金山分校(UCSF)的研究人员发现了位于TERT基因启动子上的基因突变如何赋予肿瘤细胞“长生不老”特性的秘密。这一......

Cell:科学家揭示端粒酶内部工作机制

端粒酶是一个RNA-蛋白复合物(RNP),负责使用其端粒酶逆转录酶(TERT)和包含模板的端粒酶RNA(TER)在染色体3’末端延长端粒DNA。它的活性是人类健康的关键决定因素,影响着衰老、癌症以及干......

更新教科书:Cell揭示端粒酶内在工作机制

“我们现在不仅看到了时钟的表面,而且也看到了内部机械运作,”UCLA化学和生物化学教授JuliFeigon说。“我们不断放大端粒酶以观察越来越多细节。如今,我们终于有能力开始推断这种酶如何发挥作用了。......

迄今最清晰端粒酶结构图像问世

据英国《自然》杂志25日发表的一篇论文,美国科学家团队使用冷冻电镜技术,以迄今最高的分辨率确定了端粒酶的结构。鉴于端粒酶与癌症和老化关系密切,该发现代表着人类向开发端粒酶相关疗法迈出了重要一步。时至今......

28载圆梦!两座诺贝尔奖杯托起人类“青春之泉”

30多年前,加州大学伯克利分校的研究人员发现了端粒酶(telomerase),这是一种可以延长染色体末端并防止它们磨损的酶,推测其在抗衰老和癌症中可能有用,从此,全球掀起了一场激活或阻断端粒酶活性的药......