海马是大脑中主要负责记忆形成的区域。3月7日来自加州大学旧金山研究所的研究人员在《Nature》发表题为“Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults”重要研究成果:在人类胎儿或后天发育过程中,海马齿状回中的神经祖细胞在人类7岁以后就会枯竭。刚出生至7岁期间,年轻的神经元细胞密度从每平方毫米大约1618个细胞减少到每平方毫米约12个,13岁时更下降至平均仅存2.4个左右。18岁以上健康成人(18-77岁共计17例死后大脑样本,其中12例来自癫痫手术患者)齿状回内未发现年轻神经元。

  这项研究意味着,人类大脑新生神经元不足的生理局限使13岁以后的大脑记忆能力走向衰退,中学以前是孩子神经元形成的唯一关键时期,如果缺乏足够的健康活动,成年后神经系统可能再也无法弥补该阶段学习和记忆功能发展不足造成的缺陷,正所谓“少壮不努力,老大徒伤悲”。

  4月5日《Cell》子刊《Cell Stem Cell》发声:人类神经元形成并没有中止,老年人的海马也有大量年轻神经元储备。威斯康星大学麦迪逊分校的神经生物学家Xinyu Zhao评价:《Cell Stem Cell》的工作采用动物神经发生研究的金标准立体测量学(stereology)计算健康人类海马内未成熟和成熟神经元,立体测量学方法足以鉴定组织内个体细胞类型数量,不受样本是否切片影响,因此,这篇新文章具有重要意义。

  “从来没人如此研究过人体组织。主要问题是缺乏可用的人脑组织,”Zhao说。“更难得的是,这项研究使用了全海马组织。”

  新论文中,哥伦比亚大学神经生物学家Maura Boldrin团队研究了28例在14岁-79岁之间死亡的健康人的脑组织,采样时,每位志愿者的死亡时间均不超过26小时。首先,用标记抗体染色特异性蛋白量化海马细胞:神经祖细胞用GFAP、巢蛋白(nestin)和Sox2标记;中间神经祖细胞用Ki-67和巢蛋白标记;未成熟的颗粒神经元用DCX和PSA-NCAM标记;成熟的颗粒神经元用NeuN标记。

图片.png

图1.《Cell Stem Cell》文章染色的神经祖细胞(粉):年轻人的(左);老年人的(右)

图片.png

图2. 《Nature》文章13岁人类儿童海马组织染色:孤立的年轻神经元(绿);周围的成熟神经元(红);细胞核(蓝)

  此前《Nature》文章也选用了相同的标记抗体,组织样本来自59例从孕期14周至77岁死亡的人类大脑。但是Baldrini指出,他们的部分组织样本没有在死亡后2天内采集,而且研究人员没有检查整个海马。

  神经形成(neurogenesis)和运动诱导的血管新生(angiogenesis)衰退被认为是人类衰老迹象。成年啮齿动物和灵长类动物海马神经形成出现衰退,成年人类海马究竟有没有新生神经元?

  Baldrini团队发现,老年人的齿状回(dentate gyrus)前部和中部存在神经祖细胞库,但细胞库的体积比年轻人小,尽管如此,老年人的齿状回前部、中部和后部每个区域平均仍含有大约1000个神经祖细胞。

  中间神经祖细胞似乎并未随年龄增长而下降,所有脑样本都含有成千上万的中间神经祖细胞,同理,老年人的各个齿状回区域也含有几千个未成熟的神经元,暗示神经形成率可能不会因衰老而下降。

  但是,研究人员发现老年人齿状回前部存在少量形态异常的PSA-NCAM+细胞,提示这可能是导致神经可塑性下降的一个原因。Boldrini解释,如果细胞不能迁移或发芽树突,这些形态学变化意味着细胞将很难整合入已有回路。

  此外,老年人齿状回前区新血管发育较少。Boldrini解释,齿状回前部关联情感,连接着杏仁核,杏仁核关联着恐惧感和压力,新研究结果表明,前区可能是衰老的先发区域。

  事已至此,《Nature》文章共同作者、加州大学旧金山研究所(UCSF)的Shawn Sorrells和Mercedes Paredes致信争辩:“(他们)提出了有趣的证据证明成年人海马血管发育下降,细胞染色实验无法作为成年人新生神经元的证据,我们质疑他们的结论解释。”

  事实上,Sorrells和Mercedes表示,他们最近也观察到了Boldrini文中提到的现象,但是他们强调,鉴定海马内新神经元在技术上是有挑战性的,他们对这些令人怀疑的细胞进行了电子显微镜和基因表达检测,UCSF学者认为它们并非年轻的神经元或神经祖细胞,而是完全不同的细胞类型。

  “这些细胞的身份是可疑的,”Sorrells和Mercedes写道。“根据这篇新文章推测的所谓的年轻神经元数量,我们应该能很容易地检测到它们,如果它们真的存在的话。但是,通过实验我们认为这项新研究无法撼动我们上个月发表文章的结论:成年人海马的神经形成是极为罕见的现象。”


相关文章

连接数千个人工神经元,自适应神经连接光子处理器问世

德国明斯特大学、英国埃克塞特大学和牛津大学联合团队现已开发出一种所谓的基于事件的架构,该架构使用光子处理器,通过光来传输和处理数据。与大脑类似,这使得神经网络内的连接不断适应成为可能。这种可变的连接是......

PNAS:将大脑中的免疫细胞直接转化为神经元有助于中风后的运功功能恢复

在一项新的研究中,来自日本九州大学的研究人员发现将大脑中称为小胶质细胞的免疫细胞直接转化为神经元可成功恢复小鼠中风样损伤后的大脑功能。这一发现表明,利用免疫细胞补充神经元可能是治疗人类中风的一条很有前......

瘫痪有救了!科学家找到了修复脊髓损伤的关键神经元,并开发出基因疗法

近日,瑞士洛桑联邦理工学院(EPFL)、加州大学洛杉矶分校(UCLA)和哈佛大学医学院的研究团队在国际顶尖学术期刊Science上发表了题为:Recoveryofwalkingafterparalys......

远古海洋动物“讲述”神经元起源的故事

扁形动物只有差不多一粒沙那么大,以一些浅海岩石表面的藻类和微生物为食。它简单到没有任何身体部位或器官。然而,西班牙巴塞罗那基因组调控中心研究人员在最新一期《细胞》杂志上发表论文称,在这些独特而古老的海......

我国科学家发现脓毒症引起认知障碍的新机制

脓毒症脑病是指非中枢神经系统感染的脓毒症引起的弥漫性脑功能障碍,是脓毒症最严重的并发症之一,特征表现为认知功能和意识状态的改变,包括注意力下降、昏睡、谵妄和情绪异常等。既往研究发现,单胺类神经递质紊乱......

一种电子神经植入物可记录神经元活动

据发表在最新一期《科学》杂志上的一项研究,一种通过血管输送的超小型、超柔韧的电子神经植入物可记录大鼠大脑深处的单个神经元活动。这项技术可作为与大脑深部区域的长期、微创生物电子接口。脑机接口(BMI)可......

一种全新的非侵入性人工冬眠技术

冬眠是一种特殊的生理状态和生存策略。在冬眠状态中,哺乳动物如熊和一些啮齿类动物通过抑制新陈代谢、降低体温和减缓其他生理过程以节约能量,来应对致命的环境压力。最新研究发现,冬眠状态受大脑控制,而大脑则充......

睡眠对记忆建立和突触可塑性的重要意义

人类以及果蝇、海兔等生物都需要睡眠来巩固记忆。关于睡眠是否改变特定神经元之间的突触从而巩固记忆和影响行为,是生物学领域重要且具挑战性的问题之一。秀丽隐杆线虫只有302个神经元,其大多数神经元的特征和功......

大脑视交叉上核神经元的初级纤毛调控机体节律

生物钟的准确性和稳定性与健康息息相关。节律如果发生异常,可引发睡眠障碍、代谢紊乱、免疫力下降,严重时可导致肿瘤、糖尿病、精神异常等重大疾病的发生。大脑的视交叉上核(SCN)是生物钟的指挥中枢,协调外周......

猕猴大脑皮层单细胞空间分布图谱发布

由860亿个神经元组成的人类大脑,就像一座结构精巧的迷宫。为了绘制出这座迷宫的地图,脑科学家们将目光聚焦在猕猴——这种与人类最接近的灵长类模式动物上,它的大脑包含超过60亿个神经元。7月12日23时,......