在一项新的研究中,来自美国杜克大学的研究人员开发出一种方法,可将CRISPR基因组编辑技术的准确性平均提高50倍。他们认为它可以很容易地扩展到这种基因编辑技术的不断扩大的其他形式。这种方法给用于识别待编辑的DNA序列的向导RNA(gRNA)添加一条短尾巴。这条增加的尾巴折叠回来进行自我结合,从而产生一把仅由靶DNA序列打开的“锁”。相关研究结果于2019年4月15日在线发表在Nature Biotechnology期刊上,论文标题为“Increasing the specificity of CRISPR systems with engineered RNA secondary structures”。

图片来自Ella Maru。
论文通讯作者、杜克大学生物医学工程副教授Charles Gersbach说,“CRISPR通常是非常准确的,但是也有一些例子表明存在脱靶活性,因此这一领域的广泛兴趣在于提高特异性。然而,到目前为止提出的解决方案不能在不同的CRISPR系统之间轻松转换。”
CRISPR/Cas9是一种被细菌用来靶向切割入侵病毒的DNA的免疫防御系统。虽然第一个版本的经设计用于人体细胞的CRISPR技术源自一种名为酿脓链球菌的细菌,但是更多的细菌物种携带着其他的CRISPR形式。
这个领域的科学家们花了数年时间寻找具有所需特性的新CRISPR系统,并不断将它们添加到CRISPR工具箱中。比如,一些CRISPR系统较小并且能够更好地导入病毒载体中,从而被递送到人细胞中用于基因治疗。但无论每种CRISPR系统的基因编辑能力如何,所有的CRISPR系统都会时不时地产生不必要的基因编辑。
CRISPR系统的一个共同特性是它们使用RNA分子作为向导,靶向结合基因组中的特定DNA序列上。一旦gRNA找到它的互补性基因序列,Cas9酶就像剪刀一样在DNA上进行切割,从而促进基因组序列发生变化。但是,鉴于每个gRNA序列仅有20个核苷酸长,而人类基因组含有大约30亿个碱基对,因此需要进行大量的筛选,并且CRISPR有时会在一两个碱基对不完美匹配的序列上进行错误地编辑。
一种提高CRISPR准确性的方法是需要两个Cas9分子结合到相同DNA序列的相对两侧上,才能实现完整的切割。虽然这种方法有效,但是它会给CRISPR系统增加更多的组件,这会增加这种系统的复杂性并使得它更难以递送到细胞中。
另一种方法是对Cas9蛋白进行基因改造而使得它不那么活跃,这样它不太可能发生擦枪走火。虽然这也显示出有希望的结果,但是这种类型的蛋白质工程是费力的,并且这种努力对于每个CRISPR系统是特异性的。
Gersbach说,“看起来几乎每周都会发现一种新的CRISPR系统,每种系统具有某种独特的性质,使得它对特定的应用非常有用。每当我们发现新的CRISPR蛋白时,对它进行广泛的重新设计使得它具有更好的准确性并不是一种简单的解决方案。”
论文第一作者、Gersbach实验室博士生Dewran Kocak说,“我们专注于一种不会添加更多组件并且对任何类型的CRISPR系统都是通用的的解决方案。所有CRISPR系统的共同点是gRNA,而且这些短RNA更易于设计。”
Gersbach和Kocak的解决方案是将gRNA延长多达20个核苷酸,使得它折叠回来并与它自身的末端结合在一起,从而形成发夹形状。这就产生了一种锁,如果在仔细检查可能遭受切割的DNA序列中,即使只有一个碱基对是错误的,它也很难被解锁。不过,鉴于gRNA更喜欢与DNA而不是自身结合,与DNA的正确结合仍然能够打开这种锁。
Kocak说,“我们能够对这种锁的强度进行微调,使得gRNA在遇到正确匹配的DNA序列时仍能发挥作用。”
在这篇论文中,Kocak和Gersbach发现这种方法可以将来自四种不同细菌菌株的五种不同CRISPR系统对人体细胞的切割准确性提高平均50倍。在一种情形下,这种提高幅度上升到200多倍。
Gersbach说,“这是一种非常简单的想法,尽管Dewran通过开展多年的研究来证实它的工作方式与我们想象的一样。这是一个很好且优雅的解决方案,能够除去脱靶活性。”
接下来,这些研究人员希望看到这种方法可以处理多少种不同的CRISPR变体,并对这种上锁机制的工作原理进行深入的描述,以便观察不同CRISPR变体之间是否存在差异。鉴于这些实验是在体外培养的细胞中进行的,他们迫切希望看到这种方法在实际的动物疾病模型中如何可能提高CRISPR的准确性。
美国科研团队在新一期《自然·生物技术》杂志发表研究成果称,他们基于逆转录酶开发出一种新型基因编辑技术,能够更精准、更高效地同时修复哺乳动物细胞内的多个致病突变,为开发广谱基因疗法奠定了重要基础。许多遗......
随着CRISPR基因编辑技术的不断进步,科学家已将其应用于马、绵羊、猪等动物的遗传改良。英国《自然》网站在日前的报道中指出,经过基因编辑的猪和绵羊等动物,正逐渐在农业领域获得认可。这些技术可提升动物的......
记者27日从中国农业科学院获悉,该院农业基因组研究所农业基因编辑技术研发与应用创新团队构建了全球规模最大的实验验证数据集,并基于此开发出人工智能(AI)大模型AlphaCD。该模型不仅能高效预测超过2......
广州医科大学附属第一医院国家呼吸医学中心主任何建行与合作者在一项研究中发现,一个经过基因工程修饰的猪肺在移植到一名确诊脑死亡的人类患者体内后,能存活9天并发挥功能。研究结果或是跨物种肺移植的首例记录,......
近日,中国农业科学院农业基因组研究所农业基因编辑技术研发与应用创新团队构建了迄今为止规模最大的实验验证数据集,并在此基础上开发了多模态机器学习模型AlphaCD。该模型不仅能够高效预测超过2万种胞嘧啶......
近日,美国哈佛大学与杰克逊实验室联合团队运用先导编辑技术,在小鼠模型中实现了对儿童交替性偏瘫(AHC)致病基因突变的精准修正。此前,中国上海交通大学医学院松江研究院仇子龙教授团队曾证实,全脑碱基编辑技......
瑞典乌普萨拉大学研究团队在6日出版的《新英格兰医学杂志》发表成果称,全球首例由CRISPR-Cas基因编辑技术获得的供体胰岛β细胞,在未使用免疫抑制剂的情况下,在Ⅰ型糖尿病患者体内成功存活,并发挥功能......
神经元中基因编辑的插图。图片来源:杰克逊实验室哪怕在五年前,人们也会认为在活体大脑中进行DNA修复是科幻小说中才有的情节。但现在,科学家已能进入大脑、修复突变,并让细胞在整个生命周期中维持住这种修复效......
美国得克萨斯大学西南医学中心研发的新型基因编辑递送系统,在α-1抗胰蛋白酶缺乏症(AATD)临床前模型上实现了肝脏与肺部的同步靶向治疗。单次给药后,模型症状改善效果可持续数月。这项发表于最新一期《自然......
新一期《自然·通讯》杂志发表一项基因组学重大突破:美国耶鲁大学团队成功将在同一细胞中编辑多个DNA位点的能力提升了2倍,并有效减少了对附近基因位点的非预期突变。新成果使基因编辑的范围和精度同时得以扩大......