发布时间:2021-05-28 11:27 原文链接: 揭示:AML中相分离形成的nYACs的重要功能

  RNA表观修饰是表观遗传学研究领域的前沿方向。截止目前,已经有超过100种RNA的化学修饰被鉴定出来,而作为真核生物mRNA内部丰度最高的RNA修饰,m6A的功能研究备受关注。m6A可以被甲基转移酶复合体(writer)复合体写入mRNA, 被去甲基化酶(eraser)去除,处于动态平衡当中。细胞中有不同的m6A阅读蛋白(reader)可以识别mRNA上的m6A修饰,进而决定mRNA的命运,调控基因表达。近年来的大量研究表明m6A的异常与多种类型肿瘤发生,转移及耐药等病理过程密切相关。前期多篇报道分别揭示了m6A甲基转移酶复合体中METTL3、METTL14、WTAP,去甲基化酶FTO、ALKBH5,阅读蛋白YTHDF2在AML发生发展中的重要功能。但是m6A在AML中被识别进而调控基因表达的机制却并不清楚。

  2021年5月27日,纪念斯隆凯特琳癌症中心的Michael G Kharas教授(程远明博士与 Dinshaw J Patel实验室谢伟博士为共同第一作者)在Cancer Cell 发表文章 N6-methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation,揭示了细胞核内m⁶A阅读蛋白YTHDC1通过相分离调控基因表达促进AML发展的机制。

  该研究利用已发表的14种AML细胞系中CRISPR Screen的数据发现,在所有m6A阅读蛋白中,细胞核内m6A阅读蛋白YTHDC1对AML细胞生存最为关键。研究者发现YTHDC1在多个不同亚型的AML病例样本中显著高表达,而在AML细胞系中通过shRNA敲低YTHDC1或者通过CRISPR敲除YTHDC1则导致AML细胞增殖减慢,髓系分化增强,细胞凋亡增多。在AML细胞系和病例样本移植(PDX)的小鼠模型中,敲低YHTDC1显著抑制小鼠中AML的发展,进一步证明了YTHDC1对AML的发展至关重要。

  那么YTHDC1怎么调控其靶向基因表达的呢?研究人员发现YTHDC1可以在细胞核内形成区室化结构,并且相比于人源HSPCs,这种区室化结构在AML细胞中明显增多。进一步研究发现,无论在体外还是细胞内,YTHDC1可以结合m6A修饰的RNA,进而通过液相分离的方式形成具有液相性质的凝聚物,被命名为“核内YTHDC1-m6A凝聚体(nuclear YTHDC1-m6A condensates,nYACs)”。在分子水平上,通过Hyper-TRIBE与iCLIP等技术鉴定YTHDC1的结合位点,结合RNA-seq与m6A图谱,研究人员发现MYC是YTHDC1的一个重要靶点,并且MYC过表达可以部分回补YTHDC1敲低引起的表型。有趣的是,不同与细胞质中m6A阅读蛋白YTHDF2促进m6A修饰的mRNA降解,YTHDC1结合m6A-mRNA形成nYACs促进其靶基因mRNA稳定性,进而促进基因表达。敲低YTHDC1导致MYC mRNA更多结合于细胞核里降解polyA-RNA的PAXT(polyA tail exosome targeting)-exosome复合体,进而引起RNA降解。

  综上,该研究首次阐明了在AML中相分离形成的nYACs的重要功能,并且提出YTHDC1可以作为一个新的AML治疗的潜在靶点。除此之外,近期多项高水平研究表明YTHDC1通过结合细胞核内m6A调控染色体状态进而调控转录,YTHDC1还参与了细胞核内mRNA剪接,DNA双链断裂修复及细胞核内RNA向细胞质的运输等细胞内多种生理过程。该项研究为YTHDC1在细胞核内的多种不同功能提供了一个新模型,即YTHDC1结合m6A在细胞核内形成nYACs,为不同反应提供微反应器。这一发现有助于人们更好的理解m6A对mRNA命运决定及基因表达调控的机制。


相关文章

研究揭示骨髓微环境中ID1调控急性髓系白血病起始与进展新机制

中国科学院上海营养与健康研究所王兰研究组在Blood上,在线发表了题为Thecellnon-autonomousfunctionofID1promotesAMLprogressionviaANGPTL......

下一级的CRISPR基因编辑技术不再需要病毒帮助

事实证明,改性病毒是将CRISPR/Cas9基因编辑材料送入细胞核的便捷方式--但它们价格昂贵,难以扩展,而且有潜在毒性。现在,研究人员已经发现了一种非病毒方法,可以更好地完成这项工作。大多数人都听说......

塑造着丝粒分布的“世纪之谜”解开

自1800年代以来,科学家们已经注意到细胞核中着丝粒的分布问题。着丝粒是一种特殊染色体区域,对细胞分裂至关重要,但其分布的决定机制和生物学意义仍悬而未决。日本东京大学团队最近提出了一种塑造着丝粒分布的......

年轻的“密码”,就在细胞的这个地方

有“铁丝网”覆盖、隐蔽在核膜下方、“垃圾”基因打包运进来……细胞核里的“垃圾区”同人类世界的垃圾区有着相似的特点:封锁、隐蔽、垃圾打包、人迹罕至。3月28日,《自然》子刊在线发表的一篇论文聚焦了一系列......

核孔复合体外环结构研究获进展

2022年1月11日,中国科学院生物物理研究所生物大分子国家重点实验室孙飞课题组联合北京大学张传茂课题组等,在爪蟾核孔复合体外环结构研究方面取得了最新成果。相关研究成果以8Åstructureofth......

开辟了多种跨膜蛋白进入细胞核实现尚未识功能的可能

具有多个跨膜结构域的跨膜蛋白很少在细胞核内发现。为了实现核内定位,必须首先从宿主膜中提取假设的跨膜蛋白,并且必须保护多个疏水跨膜结构域免受细胞质亲水环境的影响,以保持蛋白质的正确构象。从机制上讲,这带......

新发现:细胞核可转变成另一种细胞核

一百五十年前,DmitriMendeleev创建了元素周期表,这是一种根据原子核性质对原子进行分类的系统。本周,一群研究生命树的生物学家推出了一种新的细胞核分类系统,并发现了将一种细胞核转变为另一种细......

揭示:AML中相分离形成的nYACs的重要功能

RNA表观修饰是表观遗传学研究领域的前沿方向。截止目前,已经有超过100种RNA的化学修饰被鉴定出来,而作为真核生物mRNA内部丰度最高的RNA修饰,m6A的功能研究备受关注。m6A可以被甲基转移酶复......

揭示:AML中相分离形成的nYACs的重要功能

RNA表观修饰是表观遗传学研究领域的前沿方向。截止目前,已经有超过100种RNA的化学修饰被鉴定出来,而作为真核生物mRNA内部丰度最高的RNA修饰,m6A的功能研究备受关注。m6A可以被甲基转移酶复......

揭示:AML中相分离形成的nYACs的重要功能

RNA表观修饰是表观遗传学研究领域的前沿方向。截止目前,已经有超过100种RNA的化学修饰被鉴定出来,而作为真核生物mRNA内部丰度最高的RNA修饰,m6A的功能研究备受关注。m6A可以被甲基转移酶复......