X射线晶体学技术是人们了解原子世界的利器,人们通过这一技术获得了许多重要的生物学结构。在晶体学技术百年诞辰之际,Cell杂志发表了清华大学施一公教授的前沿文章。这篇综述性文章全面介绍了X射线晶体学技术和结构生物学的历史和现状,读者现在可以在Cell网站免费获取全文。

  1914年,德国科学家Max von Laue因为发现晶体中的X射线衍射现象,获得了诺贝尔物理学奖,这一发现直接催生了X射线晶体学。从那以后,研究者们用这一衍射技术解析了大量复杂分子的晶体结构,从简单的矿物、高科技材料(如石墨烯)到病毒等生物学结构。

  自1957年确定了肌红蛋白的结构以来,X射线晶体学技术就成为了结构生物学的重要工具,为人们不断揭示生命的奥秘。这一技术不仅增进了我们对细胞的认识,还大大推动了现代医学的发展。

  这篇文章首先从结构生物学的角度,回顾了X射线晶体学技术的发展简史。随后,施一公教授以蛋白激酶和膜整合蛋白为例,阐述了结构生物学的发展和现状,探讨了技术发展带来的影响并对未来进行了展望。

  作者简介:

  施一公 河南郑州人,世界着名的结构生物学家,美国双院外籍院士,中国科学院院士。曾是美国普林斯顿大学分子生物学系建系以来最年轻的终身教授和讲席教授。

  2008年2月至今,受聘清华大学教授;2009年9月28日起,任清华大学生命科学学院院长。获2010年赛克勒国际生物物理学奖。2013年4月当选美国艺术与科学院外籍院士、美国科学院外籍院士。2013年12月19日,施一公当选中国科学院院士。2014年4月2日,施一公获爱明诺夫奖,成为获此奖项的第一位中国人。该奖为国际知名奖项,由瑞典国王亲自颁发。

  主要科研领域与方向:主要运用结构生物学和生物化学的手段研究肿瘤发生和细胞凋亡的分子机制,集中于肿瘤抑制因子和细胞凋亡调节蛋白的结构和功能研究与重大疾病相关膜蛋白的结构与功能的研究

相关文章

关于药包材生物学评价与试验选择指导原则标准草案的公示

药典委发布关于药包材生物学评价与试验选择指导原则标准草案的公示。拟制定药包材生物学评价与试验选择指导原则。为确保标准的科学性、合理性和适用性,现将拟制定的标准公示征求社会各界意见(详见附件)。公示期自......

理化所在零面压缩材料的结构设计和新材料探索方面取得进展

零压缩是一种罕见的力学现象,它能够在静水压力环境下展现出一个或多个轴向尺寸的稳定性。与一维零压缩材料相比,二维零压缩(即零面压缩)材料不仅拥有更高维度的机械稳定性,同时能够在依赖于通量面积的信号传输中......

《科学》发布125个最具挑战性的科学难题,涉及医学、材料、人工智能等

2005年,《科学》(Science)杂志在其创刊125周年之际,公布了125个最具挑战性的科学问题。这些问题涵盖地球科学、能源、宇宙领域,并涉及数学与计算机科学、政治与经济、能源、环境和人口等领域,......

美国成立国家生物学理论和数学研究所

美国国家科学基金会(NSF)与西蒙斯基金会出资5000万美元合作成立了国家生物学理论与数学研究所(NITMB),将汇集数学和生物科学领域的专家,探索与环境、生物医学和生物技术等广泛主题和行业相关的研究......

美国成立国家生物学理论和数学研究所

美国国家科学基金会(NSF)与西蒙斯基金会出资5000万美元合作成立了国家生物学理论与数学研究所(NITMB),将汇集数学和生物科学领域的专家,探索与环境、生物医学和生物技术等广泛主题和行业相关的研究......

晶体中霍普夫子的实验证据首现

霍普夫子是几十年前预测的磁自旋结构,近年来已成为热门且具有挑战性的研究课题。22日发表在《自然》杂志上的一项研究中,来自瑞典、德国和中国的科学家合作提出有关霍普夫子的第一个实验证据。瑞典乌普萨拉大学物......

2023年度国家自然科学基金“229Th核钟跃迁精密光谱及关键技术研究”项目

229Th核基态到同核异能态(229mTh态)的跃迁是目前唯一可通过激光技术研究的原子核跃迁。由于该跃迁对外场不敏感,且品质因子Q高达1019,因而基于该跃迁所研制的229Th核光钟频率不确定度有望超......

空间站实验获新进展

“目前国家太空实验室已经建成,科学实验设施运行状态良好。”7月19日,在“空间站空间科学与应用项目进展媒体通气会”上,中国科学院空间应用工程与技术中心研究员、载人航天工程空间应用系统副总师王珂说。他介......

我国科学家创制全波段相位匹配晶体

原文地址:http://news.sciencenet.cn/htmlnews/2023/7/504733.shtm激光是20世纪人类最重大的发明之一,60多年来,13项诺贝尔奖与激光技术密切相关。非......

科学家发现罕见晶体在受到光线照射时会改变颜色并融化

一组与日本大阪大学合作的化学家已经发现了一种罕见的晶体,只要暴露在紫外线下就会融化。研究人员在《化学科学》杂志上的一篇新论文中发表了他们的发现。据研究人员称,这种晶体在融化时其发光水平会发生一系列变化......