发布时间:2015-09-08 16:18 原文链接: 著名科学家Nature发表重要研究成果

  在中枢神经系统中,神经递质门控离子通道能够根据神经递质的结合情况,调节穿过神经元细胞膜的离子流,介导快速的兴奋性和抑制性信号传导。

  甘氨酸是神经系统的主要抑制性递质,它通过甘氨酸受体(GlyR)起作用,打开氯离子通道进而抑制神经元的激发。GlyR控制着多种运动和感知功能,包括视觉和听觉。GlyR发生突变与自闭症、过度惊吓等神经疾病有关。由于缺乏高分辨率的结构数据,人们对甘氨酸受体的分子机制还知之甚少。

  俄勒冈健康与科学大学、加州大学、HHMI的科学家们日前通过冷冻电镜阐明了甘氨酸受体的作用机制。这项研究发表在九月七日的Nature杂志上,文章的通讯作者是结构生物学牛人Eric Gouaux,冷冻电镜专家程亦凡博士也参与了这项研究。程亦凡博士是加州大学旧金山分校的副教授,他原本是物理学博士,后来改用物理学方法研究生物问题。 近来程博士在冷冻电镜方面陆续发表了多项重要成果,受到了广泛的关注。

  研究人员对斑马鱼的α1 GlyR进行了研究,使其分别与士的宁、甘氨酸、甘氨酸/伊维菌素结合。士的宁(Strychnine)是一种有毒的生物碱,能够拮抗GlyR阻断氯离子流。甘氨酸在GlyR上的结合位点与士的宁相同,它的作用是促进通道开启,允许氯离子流过。而伊维菌素(ivermectin)能通过别构机制增强甘氨酸诱导的离子流,调控GlyR的活性。

  随后他们通过单颗粒冷冻电镜(cryo-EM)揭示了拮抗剂、激动剂、别构调节物与GlyR之间的分子互作。研究表明,拮抗剂士的宁将GlyR锁定在关闭状态,激动剂甘氨酸将GlyR稳定在开启状态,而甘氨酸/伊维菌素复合物使GlyR处于半开状态。

  结构生物学曾经是X射线晶体学技术的天下,现在冷冻电镜(cryo-EM)逐渐有了后来居上之势。随着硬件设备和软件算法等方面的突破,冷冻电镜越来越受到重视。该技术的优势在于不需要结晶,样品用量很少,可以在短时间内同时获得多个复合体状态的三维结构。

  GlyR是Cys-loop受体家族中的一员,这类受体神经系统中有着突出作用,是许多天然物质和人工试剂的作用靶标。这项研究不仅阐明了GlyR的作用机制,也有助于解读Cys-loop受体的结构。

相关文章

研究发现:在大城市里住的太挤,真的会折寿!

我们都知道,大城市虽然繁华,但却并非人人都心向往之。因为在表面的繁华之下,隐藏着的是高强度的工作压力、极快的生活节奏、压得人喘不过气的车贷房贷,以及日渐疲惫的身心......随着社会阶层的固化以及内卷......

报告:多数青少年对体重不满意,近1成选择节食减重

5月10日,中国社会科学院大学与社会科学文献出版社联合发布了《中国青少年健康行为研究——基于13个省份的调查数据分析》。研究表明,大多数的青少年对于自己的体重不是很满意,甚至9.2%青少年选择节食减重......

效仿人脑节能,可用于AI的大型类脑神经网络实现

在《自然·机器智能》杂志上发表的一项新研究中,荷兰国家数学与计算机科学研究所(CWI)科学家展示了类脑神经元如何与新颖的学习方法相结合,能够大规模训练快速节能的尖峰神经网络。潜在的应用包括可穿戴人工智......

科学家有望开发出人类罕见的神经胶细胞瘤的新型疗法

弥漫型内因性桥脑神经胶细胞瘤(DIPG,DiffuseIntrinsicPontineGlioma)是一种致命性的小儿脑瘤,患者常常会在诊断后的一年内死亡,由于肿瘤的位置,进行手术几乎是不可能的,化疗......

科学家阐明摄食全过程的序列性神经调控机制

自然环境变幻莫测。自然界中的动物即使在摄食过程中也需要时刻关注环境中的各种线索,一方面有助于及时发现危险,另一方面利于获取更多资源。长期以来,由于缺乏细致分析动物多种自发行为的手段,科学家主要利用摄食......

研究发现细胞衰老可能与基因表达错误率上升有关

美国研究人员最新发现,细胞内部基因表达的错误率越来越高,无法正常合成蛋白质,可能是细胞停止分裂、陷入衰老状态的原因。这项成果由美国国家老龄问题研究所等机构的人员取得,有望为研发抗衰老药物提供新靶点,相......

科学家绘制番茄群体级别表观遗传变异图谱

海南大学三亚南繁研究院/热带作物学院教授王守创团队绘制出首个番茄的群体级别表观遗传变异图谱。通过研究,他们发现,在番茄育种历史过程中,群体DNA甲基化在多个维度上发生了巨大变异。相关研究为番茄遗传改良......

刘明院士团队:自旋神经形态器件研究新进展

生物启发脉冲神经网络架构有望通过模拟人脑的高算力、高并行度、低功耗等特性,解决冯·诺依曼架构存储墙和能效瓶颈等问题。然而,面向构建脉冲神经网络的神经形态硬件的研究尚处于探索阶段,基于传统CMOS的神经......

南开大学有机新物质创造前沿科学中心获批立项

近日,教育部发布《教育部办公厅关于2022年度前沿科学中心立项建设的通知》,南开大学“有机新物质创造前沿科学中心”获批立项建设,这标志着该校在国家重大基础研究平台建设上取得了新突破。据悉,“有机新物质......

研究:到2030年全球淡水供应短缺将达40%

在联合国2023年水事会议前夕,一项最新发布的研究显示,世界正面临严重水资源危机,到2030年,全球淡水供应将短缺40%,在水资源紧张的地区会出现更严重短缺。报告指出,各国必须将水资源视作一项全球共同......