发布时间:2015-11-03 17:04 原文链接: 微生物所等解析出青蒿素类过氧桥键的生物合成机制

  自然界中含有过氧桥键的化合物具有多种生物活性,包括抗感染、抗肿瘤、以及抗心律失常,其中最具代表性的青蒿素(artemisinin)已经作为抗疟疾药物应用于临床近40年。我国学者屠呦呦近日也因青蒿素研究工作共同获得2015年诺贝尔生理学或医学奖。美国加州大学伯克利分校教授Jay Keasling曾耗时12年,花费4000万美元进行艰辛研究,最终联合Amyris公司于2013年4月10日在《自然》(Nature)杂志上发布了他们的成果:应用合成生物学技术成功在转基因酵母中生产出青蒿素合成的前体青蒿酸,使利用酵母生产青蒿素取得突破性和革命性进展。青蒿素的生物活性与过氧键密不可分,但催化青蒿酸形成青蒿素的环内过氧键合酶却一直没有找到,成为一道世界难题。

  由中国科学院微生物研究所研究员张立新担任首席科学家的973项目“合成微生物体系的适配性研究”团队大胆猜测,催化这类反应的环内过氧键合酶元件可能来源于黄花蒿共生的真菌中,并试图从自主构建的海洋微生物天然产物库中发现这类含有过氧桥键的化合物及其相应的催化酶。通过与973海外团队成员、美国波士顿大学刘平华课题组和德克萨斯大学奥斯汀分校张燕课题组密切合作,他们从几株曲霉和靑霉菌种中分离出具有抗感染等多种生物活性的含过氧桥键萜类吲哚生物碱真菌毒素Verruculogen。同时,研究人员解析了该化合物中的过氧桥键是由一个依赖a-酮戊二酸的单核非血红素酶FtmOx1催化合成。上述研究结果11月3日在线发表于《自然》(Nature)杂志(doi:10.1038/nature15519)。

  该文章首次报道了FtmOx1的晶体结构,以及FtmOx1分别与a-酮戊二酸和底物fumitremorgen B的共晶体结构,并通过详尽的酶学实验结果验证了FtmOx1的功能。当a-酮戊二酸和两个氧原子结合到铁中心后,酪氨酸残基(Y224)屏蔽了催化中心,使其不能直接接触底物,而其他绝大多数的a-酮戊二酸的单核非血红素酶的活性中心都可以直接作用于底物,这也是FtmOx1催化的独特之处。当Y224突变为丙氨酸或苯丙氨酸后,FtmOx1催化主产物不再是过氧键化合物,这也进一步表明了Y224残基在环内过氧键催化中的重要性。此外,快速反应动力学和冷冻淬火电子自旋光谱实验结果证实了FtmOx1反应中存在自由基中间体。

  阐明这一特别的环内过氧桥键的生物合成新机制使发现催化青蒿酸形成青蒿素的环内过氧键合酶向前迈进了一大步。进一步研究其酶学机制将为含有过氧桥键的萜类吲哚生物碱的广泛应用奠定科学和应用基础。

  张立新、刘平华和张燕为论文的共同通讯作者,微生物所副研究员宋福行等为共同作者。该研究得到了国家杰出青年基金和“973项目”的资助。

  论文链接

  

图1. FtmOx1的晶体结构和活性位点

  

图2. Y224突变后酶反应产物的HPLC色谱图

  

图3. Y224突变后酶反应产物结构

相关文章

我国科学家发现黄花蒿首个染色体级别基因组图谱

疟疾至今仍威胁着人类的健康。黄花蒿是全球普遍使用的抗疟疾药物——青蒿素的主要天然资源,保障全球优质廉价的青蒿素原料供应对于全球疟疾防控有重要价值。但黄花蒿基因组杂合度和重复度很高,致使高质量的黄花蒿基......

屠呦呦:愿青蒿素的故事一直写下去

“我最大的梦想就是用古老的中医药,促进人类健康,让全世界的人们都能分享到它的好处。自己一辈子想的,就是老老实实把科研做好,把课题做好,希望把青蒿素的研究做得更深入,开发出更多药物来,造福更多人,这也是......

活有机体中发现自然生物合成过程

科技日报北京6月1日电(实习记者张佳欣)据1日发表在英国《自然》杂志上的研究,日本东京大学、日本高能加速器研究机构(KEK)、中国武汉大学与德国波恩大学合作,首次见证了在真菌中不使用角鲨烯就形成三萜类......

150年历史告诉你,基础科学如何推动人类进步

90年前,当英国物理学家查德威克通过实验发现一种新粒子时,他一定想不到,90年后的人们,会受益于他的发现,用上核能发电。2022年是联合国确定的“基础科学促进可持续发展国际年”,相关活动将由联合国教科......

盖茨基金会:中国抗疟经验有很强适应性

原文地址:http://news.sciencenet.cn/htmlnews/2022/4/478054.shtm每年4月25日是世界防治疟疾日,4月26日则是中国的“全国疟疾日&rdq......

为全球抗疟贡献中国智慧与方案

原文地址:http://news.sciencenet.cn/htmlnews/2022/4/477948.shtm新华社内罗毕4月25日电题:为全球抗疟贡献中国智慧与方案新华社记者朱绍斌4月25日是......

青蒿素问世50周年,为何屠呦呦仍牵挂?

原文地址:http://news.sciencenet.cn/htmlnews/2022/4/477941.shtm中新社北京4月25日电题:探访屠呦呦工作室:青蒿素问世50周年,为何她仍牵挂?中新社......

世界防治疟疾日:消除疟疾“中国神草”青蒿素功不可没

4月25日是世界防治疟疾日。说起疟疾,人们自然会想到青蒿素和它的发现者屠呦呦。今年恰逢青蒿素问世50周年。曾经,人们谈“疟”色变,有数字显示,在青蒿素被发现前,全世界每年约有4亿人次感染疟疾,至少有1......

消除疟疾“中国神草”青蒿素功不可没

原文地址:http://news.sciencenet.cn/htmlnews/2022/4/477907.shtm4月25日是世界防治疟疾日。说起疟疾,人们自然会想到青蒿素和它的发现者屠呦呦。今年恰......

我国科学家解析小RNA的生物合成机制

小RNA是真核生物中重要的基因调控分子,在生长发育、基因沉默、抵御病毒等动植物的各类生理过程中起着至关重要的作用。小RNA的生物合成中,Dicer家族核酸内切酶选择性识别小RNA前体,切割RNA至特定......