发布时间:2016-10-21 11:13 原文链接: 亚盛医药领先布局2016诺奖成果

  细胞自噬概念于20世纪60年代首次提出。自噬是存在于真核生物钟一种高度保守的代谢过程,是指从粗面内质网的无核糖体附着区脱落的双层膜包裹部分胞质和细胞内需降解的细胞器、蛋白等成分形成自噬体,并与溶酶体融合形成自噬溶酶体,降解其所包裹的内容物,以实现本身的代谢需要和某些细胞器的更新的一个分解代谢过程。

  诺贝尔生理或医学奖首次颁发给细胞自噬领域的科学家,而且是单独获奖,再次引发了生物医药界及投资界对这一不算“新颖”的自然科学发现的浓厚兴趣。

  细胞自噬概念提出至今,主要研究方向一直集中在细胞存活方面。在肿瘤细胞中诱导自噬在某些情况下被认为是营养饥饿环境和细胞毒性应激中保护细胞存活的机制,在某些情况下又可诱导细胞发生自噬性死亡,这被称为II型程序性细胞死亡,细胞凋亡是另一种程序性细胞死亡,被称为I型程序性细胞死亡。近年来,细胞自噬与细胞凋亡的相互关系研究,取得了显著进展。

  BCL-2家族蛋白

  一系列研究结果表明,Bcl-2家族蛋白是细胞凋亡和自噬的双重调节蛋白,Bcl-2抗凋亡蛋白可与重要的自噬基因Beclin 1相结合从而抑制自噬,而Bcl-2抑制剂通过干扰Beclin1与Bcl-2之间的相互作用诱导自噬,这些Bcl-2抑制剂包括AT-101((-)-棉酚)、ABT-737 ABT-263/obatoclax等。

  全球首个上市的BCL-2抑制剂为AbbVie公司的Venetoclax(ABT-199),2016年4月获得FDA批准。该药在临床评价过程中先后获得美国药监局授予的三项突破性疗法认定,分析师预测该药未来市场容量至少在30亿美元以上。

  亚盛作为细胞自噬领域的先行者,自主设计开发的原创BCL-2抑制剂AT-101现已进入中国及美国Ⅱ期临床阶段,与此同时亚盛医药还同步设计开发了另外2项BCL-2抑制剂APG-1252及APG-2575,目前分别处于待批中美临床及临床前开发阶段。

  AT-101以Beclin1依赖或Beclin1非依赖的途径诱导自噬(具体机理详见下图)。其中在Burkitt淋巴瘤、乳腺癌、宫颈癌和非小细胞肺癌中诱导促生存的细胞保护性自噬;在前列腺癌细胞、恶性周围神经鞘瘤和脑胶质瘤中诱导自噬性死亡。

  XIAP及MDM2-p53蛋白

  肿瘤抑制蛋白p53也是调节细胞凋亡的另一重要蛋白,可以进行双重自噬调节,且取决于它的亚细胞定位。一方面,细胞核中的p53作为转录因子,反式激活细胞凋亡、细胞周期阻滞和诱导自噬。另一方面,细胞质的p53可以抑制自噬。

  目前认为放化疗在肿瘤中诱导的自噬表现为细胞保护性或细胞毒性,取决于肿瘤细胞中p53的状态。凋亡抑制蛋白XIAP、p53负调节因子MDM2的上调与多种人类肿瘤的发生直接相关,靶向抑制XIAP或MDM2的活性,可高效促进肿瘤细胞的自我凋亡及肿瘤组织的消失。

  进一步研究结果表明XIAP通过E3泛素连接酶活性泛素化降解MDM2,增加胞质中的p53的表达从而抑制细胞自噬,这些研究结果揭示了一种新的XIAP-MDM2-p53途径介导的自噬抑制,这也进一步提示了XIAP或MDM2蛋白抑制剂对肿瘤治疗的机理:促凋亡与自噬调控并存。

  尽管在XIAP及MDM2-p53靶点领域尚未有上市药物,但罗氏、诺华等跨国公司在这两个领域均已有布局。亚盛医药也成功设计开发出了原创的XIAP及MDM2-p53靶点药物APG-1387及APG-115,现分别进入到了美国,澳大利亚以及中国的临床Ⅰ期试验阶段。

  从目前在研药物数据分析结果来看,在Bcl-2、XIAP及MDM2-p53靶点小分子抑制剂领域有完整产品管线布局的公司屈指可数,仅有诺华,亚盛医药两家,国内尚无其他药企介入。

  尽管现阶段基于自噬调控的癌症药物临床研究数量并不多,但随着对自噬在肿瘤发生、发展及治疗领域的研究逐步深入,必将会有更多的药物进入临床研究阶段,而亚盛医药自主设计开发的一系列凋亡和自噬双通道调控抗肿瘤药物也有望成为该领域的代表性药物。

相关文章

爱“迟到”的诺贝尔奖让科学家获得认可的道路越来越长

近日,2023诺贝尔奖揭晓。能够获得这项一年一度的世界上最负盛名的科学奖项,是对获奖者努力的最大认可。但是有研究发现,这种“认可”到得越来越迟了——几乎一半的获奖者从做出有诺贝尔价值的发现到获得该奖项......

开发下一代RNA药物,新科诺奖得主魏斯曼创立新公司,已完成2.7亿美元A轮融资

2023年10月2日,诺贝尔奖生理学或医学奖授予了mRNA技术的两位奠基人——KatalinKarikó、DrewWeissman。以表彰他们发现了核苷碱基修饰,从而开发出了有效的mRNA疫苗来对抗C......

阿秒激光:为“狂飙”的电子摄影

皮埃尔·阿戈斯蒂尼(左)、费伦茨·克劳斯(中)和安妮·吕利耶(右)因“用实验方法产生了可用于研究物质中的电子动力学的阿秒量级光脉冲”而获得2023年诺贝尔物理学奖就像我们用光来观察周围的宏观世界一样,......

缤纷量子点:绘制绚丽纳米世界

蒙吉·巴文迪(左)、路易斯·布鲁斯(中)和阿列克谢·叶基莫夫(右)因“量子点的发现与合成”荣获2023年诺贝尔化学奖一旦物质的大小达到百万分之一毫米级别,就会产生挑战人类直觉的奇怪现象——量子效应。假......

碱基修饰:为疫苗开发贡献“加速度”

卡塔琳·考里科(左)和德鲁·韦斯曼(右)因在核苷碱基修饰方面的发现而获得2023年诺贝尔生理学或医学奖。新冠疫情影响了人类近3年,新冠病毒也成了此期间人类健康的最大威胁之一。获得今年诺贝尔生理学或医学......

采访卡里科:从被拒稿到获得诺贝尔奖,坚持大胆构想拯救了全世界!

导读北京时间10月2日,匈牙利出生的生物化学家KatalinKarikó(卡塔琳·卡里科)和美国免疫学家DrewWeissman(德鲁·魏斯曼)因为他们的研究成果,导致了两个最重要的COVID-19疫......

2023年物理学诺奖得主铸魂世界最快相机,带领人类进入阿秒时代

10月3日,2023年诺贝尔物理学奖授予皮埃尔·阿戈斯蒂尼(PierreAgostini)、费伦茨·克劳斯(FerencKrausz)、安妮·吕利耶(AnneL’Huillier),表彰他们对于超快激......

mRNA疫苗研发者获得诺贝尔奖,基础科学研究开创科技发展新空间

10月2日,2023年诺贝尔生理学或医学奖评选结果公布。美国匈牙利裔科学家卡塔琳·卡里科和德鲁·魏斯曼因为发明利用碱基修饰的方法来制备安全有效的mRNA疫苗而共同分享这个殊荣。mRNA疫苗技术获得诺贝......

物理所魏志义评Nobel物理学奖得主

刚刚,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国科学家皮埃尔·阿戈斯蒂尼、德国科学家费伦茨·克劳斯和瑞典科学家安妮·勒惠利尔,以表彰他们“为研究物质中的电子动力学,而产生阿秒激光的实验方法......

40年冷板凳得诺奖科学研究需要和精致的平庸做长期抗争

匈牙利裔美国科学家卡塔琳·考里科(KatalinKarikó)和美国科学家德鲁·韦斯曼(DrewWeissman)因其为mRNA疫苗发明奠定基础而斩获诺奖,同行高度评价他们的研究,就像诺贝尔奖委员会讲......