发布时间:2018-01-30 16:01 原文链接: 数字微流控技术能否革新实验?

  据麦姆斯咨询报道,麻省理工学院(MIT)研究人员开发出一款创新硬件,利用电场将化学或生物溶液的液滴移动到印刷电路板(PCB)表面,并将它们以各种方式混合,用于并行测试数千种反应。

  研究人员将该硬件视为目前常用于生物研究的微流控装置的替代品。常用的微流控装置中的生物溶液通过微阀连接的微通道抽吸。新方法则以计算好的程序通过电控方式移动印刷电路板上的液滴,可以使实验更高效、更经济、更大规模地进行。

  麻省理工学院媒体实验室新系统开发负责人Udayan Umapathi指出,“传统的微流控装置会用到微通道、微阀和微泵,意味着它们都是机械式的,会时不时地出故障。三年前我就注意到这个问题,当时我在一家合成生物公司,在那里我建立了一些微流控装置,以及能够与之相互作用的机械式装置。我必须看护着这些装置,以确保它们不会发生‘爆炸’”。

  Umapathi继续说道,“生物学正在走向越来越复杂的过程,我们需要能够操纵越来越小液滴体积的技术。微通道、微阀和微泵很快变得复杂起来。之前我创建的装置,花费了我一个星期的时间去组装100个内部连接。假设装置规模从100个连接变成100万个连接,手动组装就变得不切实际。”

  该款新硬件包括软件部分,允许用户以高度概括性语言描述他们希望进行的实验。软件自动计算液滴在整个表面的路径,并协调后续操作的时间。

  “操作者可以指定实验的需求,例如,试剂A和试剂B需要混合并‘培养’一段时间,然后与试剂C混合。操作员不需要指定液滴如何流动或在哪里进行混合,这一切都由软件预先计算完成。”

  Umapathi和他的共同研究者——麻省理工学院Jerome B. Wiesner媒体艺术和科学学院教授Hiroshi Ishii,在Ishii实验室工作的本科生Patrick Shin和Dimitris Koutentakis,以及该实验室的韦尔斯利学院本科生Sam Gen Chin,在本月出版的在线杂志《MRS Advances》上,以论文形式描述了他们的创新硬件。

  在过去的十年里,其它研究小组已经尝试过用“数字微流控”,或电动液滴操纵来进行生物实验。但是他们的芯片通常使用高端刻蚀技术制作而成,这种技术需要进行环境控制,达到无尘室级别。Umapathi和他同事专注于降低成本。他们的硬件样品使用了一块印刷电路板,这是一种商品市场上可以购买到的电子器件,由塑料板组成,上面布置有铜线。

  研究人员的首要技术挑战是为印刷电路板的表面设计一个减少摩擦的涂层,使液滴能够滑过,此举能防止生物或者化学分子黏附,这样它们就不会污染后续的实验。印刷电路板采用电级阵列图案化。在样品中,研究人员将更密集的微小球体阵列涂在板子上,这些球体只有1微米高,由疏水(防水)材料制作而成。液滴滑过球体顶部。研究人员也试验了球体以外的结构,这些结构在特定生物材料中效果更好。

  由于该装置的表面是疏水性的,因此沉积在表面的液滴会自然呈现球形。充电电极将液滴往下拉,将其压平。如果扁平液滴下方的电极逐渐关闭,旁边的电极就会逐渐打开,疏水材料将驱动液滴往带电电极移动。

  移动液滴需要高电压,大约在95~200伏之间。麻省理工学院研究人员的带电电极装置在高压、低频(1千赫兹)信号和3.3伏、高频(200千赫兹)信号之间,以每秒300次的频率进行交替。高频信号使系统能够确定液滴的位置,它所使用的技术与触屏手机基本相同。

  如果液滴移动不够快,系统会自动提升低频信号的电压。系统也能从传感器信号中预估液滴的体积,与位置信息一起,帮助研究人员追踪反应的进度。

  Umapathi认为,数字微流控技术能够大大降低工业生物学中常用实验程序的成本。例如,制药公司会频繁地进行多个并行的实验,需要用到配备有数十,甚至数百移液器的机器人,以及非常像加长滴管的小测量管。

  Umapathi提出,“如果你去了解一家药物开发公司,一台移液机器人一周内将使用一百万个移液器吸头,这也将转化为新药开发成本的一部分。我正在开发一些液体分析方法,可以将移液操作次数减少100倍。”

相关文章

中石化安工院首创:水体多参数快速定量检测设备

中国石化青岛安全工程研究院孙冰团队报道了基于微流控技术研发的水体多参数快速检测系统。通过直径六厘米的微流控芯片搭配手持式数据读出设备或智能手机,可以一次定量检测多达五个参数,测试时间只有传统方法所需时......

原子光谱新技术及应用分会场:深究机理推动应用极限

分析测试百科网讯2020年11月1日,第21届全国分子光谱学学术会议暨 2020年光谱年会,在四川成都世外桃源酒店继续召开。在第一天大会报告后,组委会安排了精彩的分会报道,分设了原子光谱新技......

变革生物医疗:微流控培养肿瘤

微流控芯片是通过对微米级通道网络内流体的驱动和控制,把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块厘米尺度的芯片上,最终实现“芯片实验室”。林炳承团队利用微流控芯片技术......

NatureCommunications:微流控捕获脑肿瘤脱落的细胞外囊泡

精确的癌症治疗依靠获得有关肿瘤的分子信息来指导有效的治疗决策。由于脑肿瘤的针头活检是侵入性的且困难的,因此生物工程师已经开发了捕获脑肿瘤释放的细胞外囊泡(EV)的微技术。囊泡携带突变的遗传物质和蛋白质......

国内微流控技术在IVD产业中的应用最早迎收获期

微流控技术的诞生,是研发人员对自动化以及效率的最大化追求。上世纪50年代末,美国诺贝尔物理学奖得主RichardFeynman教授预见未来的制造技术将沿着从大到小的途径发展,他在1959年使用半导体材......

微流控分子组装技术实现氨基酸外消旋体手性测量

近日,中国科学院国家纳米科学中心孙佳姝课题组在微流控精准组装及外消旋体手性测量方面取得进展。相关研究成果“EnantiomorphicMicrovortex-EnabledSupramolecular......

Analyst:新型微流控芯片可实现100%单细胞捕获率!

近日,中国科学院深圳先进技术研究院医工所微纳系统与仿生医学研究中心研究员陈艳和南加州大学教授钟江帆合作,在针对稀有细胞样本的单细胞测序技术方面取得新进展。相关研究成果以Improvingsingle-......

岛津CELLENTCMMS斩获生物质谱细胞分析创新ANTOP奖

分析测试百科网讯2019年10月24日,由分析测试百科网主办的2019年ANTalk分析测试百家讲坛暨ANTOP颁奖盛典于国家会议中心隆重召开。经专家和网友的评审、投票,岛津的CELLENTCM-MS......

微流控构筑微纳功能材料及其生物医学应用

近日,中国科学院深圳先进技术研究院医工所纳米调控研究中心副研究员杜学敏(通讯作者)及其团队成员赵启龙(第一作者)、崔欢庆(共同第一作者)和王运龙在材料领域期刊Small上发表微流控构筑微纳功能材料及其......

微流控居然能干这事?

近日,中国科学院深圳先进技术研究院医工所纳米调控研究中心副研究员杜学敏(通讯作者)及其团队成员赵启龙(第一作者)、崔欢庆(共同第一作者)和王运龙在材料领域期刊Small上发表微流控构筑微纳功能材料及其......