发布时间:2018-06-01 14:42 原文链接: 大连化物所在NatureReviewChemistry上发表单原子催化述评

  我所张涛院士团队在单原子催化研究方面的开创性工作以及后续系列进展受到了国际同行的广泛关注。近日,该研究团队的王爱琴研究员、张涛院士与清华大学化学系李隽教授一起受邀在《自然综述:化学》(Nature Review Chemistry)杂志上发表题目为“Heterogeneous Single-Atom Catalysis”的述评文章。

  作为一种特殊的负载型金属催化剂,单原子催化剂专指载体上的所有金属组分都以单原子分散的形式存在。“单原子催化”概念由张涛、李隽及美国亚利桑那州立大学刘景月教授于2011年共同提出(Nature Chemistry)。在短短7年的时间里单原子催化迅速成为催化领域的研究前沿。越来越多的研究结果表明,单原子催化剂由于其特殊的结构而呈现出显著不同于常规纳米催化剂的活性、选择性和稳定性。随着先进表征技术的发展,单原子催化剂为从原子和分子层次阐明催化剂的构效关系提供了机会,同时也为连结多相催化与均相催化提供了可能。

  该述评首先从历史角度对“单原子催化剂(Single-Atom Catalyst)”和“单活性位催化剂(Single-Site Catalyst)”概念进行了阐述,指出两者在概念上的区别。文章进而系统综述了单原子催化剂在不同载体上的稳定机制,在热催化、电催化、光催化反应中的应用;探讨了单原子的催化活性、选择性、稳定性与其局域结构和电子性质的关联。文章最后还展望了单原子催化领域存在的机遇与挑战。

  以上研究得到了科技部重点研发计划、国家自然科学基金委基金项目、中国科学院战略性先导科技专项和教育部能源材料化学协同创新中心(2011·iChEM)的资助。

相关文章

高效光热协同催化剂被开发,实现空气中二氧化碳的捕获和转化

近日,哈尔滨工业大学化工与化学学院李英宣课题组开发出高效光-热协同催化剂,实现空气中二氧化碳的捕获和转化,研究成果以《在铂负载镍基金属有机框架上运用双活性位点协同作用实现热辅助红外光催化转化大气中的二......

中国科大“机器化学家”利用火星陨石智能创制产氧催化剂

移居火星是人类的梦想,但首先要解决缺乏氧气的问题。火星上存在水资源的可能,为利用太阳能驱动的电催化析氧反应制备氧气提供了机遇。人类无法在无氧的火星环境下长期生存,因而在火星上就地取材创制催化剂成为难以......

液态金属催化剂引领化工工艺变革,助力实现“绿色化学”解决方案

液态金属可能是人们期待已久的“绿色化工”的解决方案。科学家们测试的一项新技术,有望取代自20世纪初成为主流的能源密集型化学工程工艺。9日发表在《自然·纳米技术》上的一项创新研究,摆脱了由固体材料制成的......

大连化物所邓德会:新过程用水直接加氢乙炔制乙烯

近日,中国科学院大连化学物理研究所研究员邓德会和副研究员于良团队,在水直接加氢乙炔制乙烯反应研究中取得新进展。团队利用碳化钼负载金(Au/α-MoC)催化剂,实现了直接用水作为氢源的乙炔加氢制乙烯新反......

上海硅酸盐所在仿生构建海胆状纳米催化剂研究中获进展

电催化还原CO2产生高附加值的化学品和燃料。而热力学稳定的CO2难以被活化,制约其催化反应速率。在多数铋基硫化物中,具有层状结构和高电子迁移率的硫化铋(Bi2S3)作为一种窄带隙(~1.3eV)半导体......

有机液体储氢方面实验新进展

氢能是来源丰富、绿色低碳、应用广泛的二次能源。发展氢能对构建清洁低碳安全高效的能源体系、实现碳达峰碳中和目标,具有重要意义。然而,氢气的安全高效储存和运输限制了氢能的发展。目前,传统的加氢催化剂存在贵......

我所开发单原子合金材料促进电催化CO2还原的CC偶联

近日,我所太阳能研究部太阳能制储氢材料与催化研究组(DNL1621组)章福祥研究员团队设计合成了一种单原子铋修饰铜合金催化剂,用于电催化CO2还原,展现出优异的C-C偶联功能,显著提高了多碳(C2+)......

团队发表尖晶石型铁酸盐催化二氧化碳加氢的综述文章

近日,中国科学院大连化学物理研究所孙剑研究员、葛庆杰研究员、位健副研究员团队受邀发表了尖晶石型铁酸盐催化剂(SFCs)驱动二氧化碳(CO2)加氢制备高值化学品综述文章。相关成果发表在《物质》上。SFC......

天津工生所等在水凝胶固定化酶研究中获进展

生物催化因绿色、温和、高选择性等特点,逐渐成为传统精细化学品制造的替代方法。而生物催化剂——酶,通常存在活性差、不稳定和难以回收利用等缺点。将酶固定化后能够提高酶的催化活性和稳定性,且可重复使用,这使......

科学家首次对高活性阴离子铂(0)复合物进行结构分析

阴离子M0复合物(M=第10组金属)由于其作为化学反应活性催化剂的潜力而引起人们的兴趣。尽管如此,主要是由于其极高的反应性,它们的分子结构的确定一直是罕见的。这对Pt0复合物来说尤其如此,因为它们被认......