发布时间:2018-12-14 10:48 原文链接: 中科院武汉物数所实现原子量子态的最高精度操控

  近日,中国科学院武汉物理与数学研究所詹明生研究员领导的团队在基于中性原子的量子信息处理的基础研究中取得重要进展。该团队率先利用魔幻光强技术构造高品质的中性原子量子寄存器,并在该新型量子寄存器中实现了保真度高于99.99%的全局单量子比特门。该操控精度超过了公认的容错量子计算所要求的量子门的操控精度的阈值。该实验研究成果近日发表在《物理评论快报》上。

  中性原子体系作为量子计算的候选体系之一,与超导、半导体等候选体系相比具有良好的可扩展性、较长的相干时间、可控的原子间相互作用等优势。在此前的实验研究中,国际上众多研究组均采用会对原子产生较大的微分光频移的光偶极阱阵列装载中性原子用于构造量子寄存器。在固有的非均匀展宽的影响下,这些研究组对寄存器中单比特量子全局逻辑门操作的错误率通常在10-3量级,未曾达到量子纠错的容错阈值(1X10-4)。该问题成为基于中性原子搭建实用型量子计算机的三大障碍之一。

  在何晓东和许鹏两位副研究员的带领下,博士生盛诚等人在此前该团队创立的单原子魔幻光强偶极阱(MI-ODT)工作的基础上,利用该技术成功地实现了一个4x4的新型魔幻光强偶极阱阵列。进而在对该阵列的16个量子比特的逐个单比特逻辑门操控中,实现了平均错误率仅为(4.7±1.1)x10-5的全局单比特量子逻辑门,并且最大与最小操控误差都在10-5的区间内,优于1X10-4。这个结果归功于魔幻光强偶极阱能抑制量子比特共振频率的非均匀展宽,从而极大地提升了阵列中量子比特的相干性以及共振频率的一致性,最终使得微波操控量子比特的精度得到显著提高。

  该研究成果是该团队发展的魔幻光强原子囚禁与量子态精密操控技术在高保真全局单量子门的成功应用,突显了该原创技术在中性原子量子计算研究的价值,为下一步构造可扩展的中性原子量子信息处理奠定了基础。

相关文章

三校合作合成“纳米岛”,催化效率提升两个数量级

近日,中国科学技术大学曾杰课题组、华盛顿州立大学YongWang课题组、加利福尼亚大学戴维斯分校BruceC.Gates课题组和亚利桑那州立大学刘景月课题组合作,在《自然》杂志上发表了最新研究成果。该......

把单原子抓进“阱”里给冰芯测年龄

科考队在青藏高原羌塘冰川钻取冰芯。极地未来供图青藏高原海拔5900米处钻取的109米冰芯,遇上一种基于量子精密测量的新的定年方法,会碰撞出怎样的火花?近日,中国科学技术大学(以下简称中国科大)教授卢征......

极化原子间微弱引力首次测得

奥地利科学家首次借助激光,让几个原子同时极化,使原子两侧分别带正电荷和负电荷,从而能相互吸引,形成一种非常特殊的键合态,并对其进行了测量。这一研究发表于《物理评论X》杂志,有望在量子和天体物理学领域发......

郭光灿院士团队:里德堡原子微波频率梳谱仪研制成功

中国科学技术大学郭光灿院士团队在基于里德堡原子的无线传感上取得新进展。团队史保森、丁冬生课题组实现一种基于里德堡原子的微波频率梳谱仪,在宽带微波的探测领域具有应用前景。相关成果日前发表于《应用物理评论......

金索坤“原子荧光技术创新奖”ANTOP奖进入专家评审阶段

七月,希望是一个好的开始。愿所有的美好,都能随着七月的来临而到访。2022年ANTOP奖的申报和评审工作如火如荼的开展。由北京金索坤技术开发有限公司申报的“原子荧光技术创新奖”ANTOP奖进入专家评审......

锶原子光晶格钟:35亿年不差一秒

逝者如斯夫,不舍昼夜。对于两千多年前的古人来说,时间就是昼夜交替。对于今天的科学家而言,时间是原子的“跳动”。在中国计量科学研究院,有一种特殊的计时设备——锶原子光晶格钟。它以锶原子的跃迁频率作为时间......

刷新记录!量子态保持时间超过5秒!

据最新一期《科学进展》报道,美国能源部(DOE)阿贡国家实验室和芝加哥大学的科学家取得了量子科学研究的重大突破:他们能够按需读出量子位,并将量子态保持完整超过5秒,从而创下新纪录。此次的量子位由易于获......

揭秘微观世界研究以接近原子的细节在液滴中拍摄病毒

研究人员使用电子显微镜首次获得了液态环境中的病毒的高分辨率图像。图片来源:宾夕法尼亚州立大学/DebKelly课题组夏天的池塘比冬天的池塘更能透露鱼的信息。原因是鱼在冰冷的环境中可能会保持静止,但这种......

利用LIGO众多反馈系统,首次实现公斤级物体量子态

美国激光干涉引力波天文台(LIGO)是测量精细运动的最精确仪器之一,它用来探测时空涟漪的一组4面镜子已经被冷却到几乎处于最低能量状态。麻省理工学院科学家利用这些镜子标记出了迄今为止接近这种冷量子态的最......

打破2018年纪录,最详细原子特写被捕捉!

近日,科学家捕捉到了迄今为止最高分辨率的原子图像,打破了2018年创下的纪录。美国康奈尔大学的DavidMuller和同事使用叠层成像技术,用x射线照射钪酸镨晶体,然后利用散射电子的角度来计算散射它们......