发布时间:2019-01-10 13:50 原文链接: “房屋架构”复合金属锂负极构筑长循环金属锂电池

  金属锂由于其极高的理论比容量和最负的还原电位而成为下一代高比能量电池的理想负极材料。然而,金属锂负极的实用化道路却十分坎坷。一方面,金属锂面临着其自身特性所带来的内忧:锂离子的沉积与溶出会造成负极体积的巨大变化;更糟糕的是沉积过程锂枝晶的形成可能会刺破隔膜,造成巨大的安全隐患。另一方面,金属锂负极还面临着来自电解液的外患:高活泼性的金属锂与电解液易发生副反应,消耗活性物质,造成电池库伦效率下降。因此,同时解决金属锂负极的内忧与外患,是实现金属锂负极实用化的重要一步。

  近期,清华大学张强教授与北京理工大学黄佳琦特别研究员(共同通讯)团队构建了一种新型的房屋架构的复合金属锂负极(命名为housed Li),即上层为固态电解质层,下层为容纳有金属锂的碳纤维骨架层,成功实现了金属锂电池的安全稳定长循环。通过对固态电解质保护层与骨架的合理设计,这种housed Li可允许电解液中的锂离子快速均匀地穿过屋顶(固态电解质层)进入屋内,而会对金属锂造成侵蚀的溶剂分子则被阻挡在屋外。内部的导电骨架结构可以提供高速的电子通道与沉积空间,助力金属锂的均匀沉积,消除锂枝晶。此外,内部骨架结构可维持负极整体的稳定性,消除体积膨胀。

  将housed Li应用于磷酸铁锂(LFP)全电池中,可极大地提高金属锂电池的长循环性能。其中,扣式电池中可稳定循环500圈以上,容量保持率高于95%,软包电池(0.45 Ah)中可稳定循环80圈以上,容量保持率为85%。

沉积/脱出循环过程中的负极形貌演变过程示意图,(A)普通金属锂负极,(B)HOUSED LI

  综上所述,该工作通过简单的机械辊压与液相反应法获得了房屋式的复合金属锂负极,有效地抵御了电解液对金属锂的侵蚀,并抑制了沉积过程的枝晶生长与体积膨胀,这为解决金属锂负极所面临的内忧外患提供了有效的解决策略。

相关文章

中国科大开发成本性能全面领先的全固态锂电池电解质

中国科学技术大学教授马骋开发了一种新型固态电解质,它的综合性能与目前最先进的硫化物、氯化物固态电解质相近,但成本不到后者的4%,适合进行产业化应用。6月27日,该成果发表在国际著名学术期刊《自然-通讯......

更环保更便宜充电更快无溶剂工艺改善锂离子电池制造

美国伍斯特理工学院(WPI)研究团队开发了一种无溶剂工艺来制造锂离子电池电极,这种电极比目前市场上的电极更环保、更便宜、充电更快,这一进步可改善电动汽车电池的制造。研究成果发表在《焦耳》杂志上。伍斯特......

含氟电解质带来四季适用锂电池

许多电动汽车的车主担心他们的电池在非常寒冷的天气里会失效。美国能源部阿贡国家实验室和劳伦斯伯克利国家实验室科学家开发了一种含氟电解质,即使在低于0℃的温度下也能很好地发挥作用。研究成果发表在最近的《先......

充电更快科学家带来制造锂离子电池电极的新方法

新的制造技术解决了电动汽车领域所面临的一个关键障碍。由伍斯特理工学院(WPI)的研究员YanWang领导的一个研究小组开创了一种生产锂离子电池电极的无溶剂方法。与目前可用的电极相比,这种新颖的方法产生......

精准电镜观测揭示空间电荷层对全固态锂电池真实影响

中国科学技术大学教授马骋团队通过球差校正电镜的原子尺度观测,研究了空间电荷层对全固态锂电池中离子传输的影响,并发现这一现象的微观机理与过往几十年的认知截然不同。3月24日,相关研究成果发表于《自然-通......

新路线进一步释放全固态锂电池潜力

中国科学技术大学教授马骋提出了一种关于全固态电池正极材料的新型技术路线,可以大幅提升复合物正极中的活性物质载量,从而更充分地发挥出全固态锂电池在能量密度上的潜力。相关研究成果近日发表于《自然-通讯》。......

中国科大提出一种新型技术路线充分释放全固态锂电池

16日从中国科学技术大学获悉,该校马骋教授提出了一种关于全固态电池正极材料的新型技术路线,可以大幅提升复合物正极中的活性物质载量,从而更充分地发挥出全固态锂电池在能量密度上的潜力。3月14日,研究成果......

国家纳米中心等在锂离子电池硅负极方面取得进展

随着智能电子、电动汽车及规模储能的快速发展,研发高能量密度、高功率密度、长循环寿命和高安全性的锂离子及后锂离子电池是当今储能领域的研究热点和焦点。开发高容量、高倍率、高稳定性电极材料是实现这一目标的重......

宁德时代申请注册“麒麟电池”商标

作为动力电池的龙头企业,宁德时代一直致力于技术的创新。早在2019年,宁德时代在全球首创了无模组电池包CTP,率先使电池体积利用率突破50%大关。而麒麟电池的诞生,也为动力电池市场带来了新的活力。而为......

可充电锂电池枝晶难题破解

据最新一期《焦耳》杂志报道,美国麻省理工学院研究人员解释了可充电锂电池枝晶的形成原因以及如何防止其穿过电解液的方法。这一发现最终可能开启一种新型可充电锂电池的设计之门,这种电池比目前的版本更轻、更紧凑......