发布时间:2019-01-21 03:46 原文链接: 生物物理所等通过编辑长寿基因获得优质人类血管细胞

  干细胞技术在再生医学中具有广阔的应用前景。由干细胞体外诱导分化获得的多种类型细胞移植入病灶部位后,可达到促进病损组织再生、恢复组织器官稳态和功能的目的。然而,干细胞治疗在有效性和安全性方面尚存局限,阻碍了该技术的普及。

  中国科学院生物物理研究所刘光慧研究组、北京大学汤富酬研究组和中国科学院动物研究所曲静研究组联合攻关,通过靶向编辑单个长寿基因产生了世界上首例遗传增强的人类血管细胞。这些血管细胞与野生型血管细胞相比,不但能更高效地促进血管修复与再生,而且能有效抵抗细胞的致瘤性转化。遗传增强人类血管细胞的成功获得为开展安全有效的临床细胞治疗提供了重要解决途径。该研究工作于1月18日以FOXO3-engineered human ESC-derived vascular cells promote vascular protection and regeneration 为题发表在Cell Stem Cell。

  FOXO3是重要的人类长寿基因,与延缓细胞衰老、抵御外界应激和增强心血管稳态关系密切。此外,FOXO3的活化可通过诱导抑癌基因表达抵抗细胞的恶性转化。研究人员历时六年的探索,最终利用第三代腺病毒载体HDAdV介导的基因编辑技术巧妙地置换了人类胚胎干细胞中FOXO3基因的第3号外显子中的两个单核苷酸,从而实现了抑制细胞中FOXO3蛋白的磷酸化和降解,促进FOXO3在细胞核内的聚集进而激活下游靶基因的表达。

  当FOXO3遗传激活的人类胚胎干细胞被定向分化为血管内皮细胞(血管内膜)、血管平滑肌细胞(血管中膜)及间质细胞(血管外膜)时,这三种血管细胞均表现出比野生型细胞更强的自我更新、抵抗氧化损伤及延缓细胞衰老等能力。在机制方面,内源激活的FOXO3通过拮抗CSRP1基因表达介导对血管细胞衰老的抵抗作用。更为重要的是,将遗传增强的人类血管细胞靶向移植到动物模型的缺血部位,可高效促进受损血管的再生,迅速恢复缺血部位的血流,证明这些细胞具有明显优于野生型细胞的血管修复能力。为验证遗传增强干细胞作为移植材料的安全性,研究人员将多种致癌因子导入野生型和遗传增强的干细胞中,发现遗传增强干细胞还可以有效地抵抗癌基因诱导的细胞恶性转化。综上所述,通过改写人类基因组中的两个碱基,研究团队成功建立了可同时抵抗细胞衰老和癌变的优质人类血管细胞。

  该项研究首次利用基因编辑技术实现了人类血管细胞的功能增强,揭示了长寿蛋白FOXO3维持人类血管稳态的新机制,从概念上证明了利用基因编辑策略获得优质安全人类血管细胞移植物的可行性。此外,该研究使规模化和标准化制备优质安全的人类细胞治疗材料成为可能,为未来的再生医学提供了一个具有潜力的选项,对发展更加安全有效的临床细胞治疗策略具有深远意义。

  刘光慧团队长期致力于衰老、干细胞和基因编辑的研究,并取得一系列开拓性的研究成果。包括:利用辅助病毒依赖的腺病毒载体(HDAdV)介导的基因编辑首次实现了人类干细胞中致病基因突变的高效矫正(Cell Stem Cell 2011);首次证明了HDAdV和TALEN两种基因编辑工具的安全性,发展了安全高效的新型基因编辑工具telHDAdV(Cell Stem Cell 2014);在人类(疾病)干细胞中修复或编辑了10余种致病基因突变,并基于此建立了系列疾病研究和药物筛选平台(Cell 2016,Science 2015,Nature 2012,Nature 2011,Nat Commun 2014,Cell Stem Cell 2011,Cell Res 2016;Protein Cell 2016,Aging Cell 2017);在经典基因编辑工具TALEN基础上研发三维基因组动态成像工具TTALE(Cell Res 2017);利用CRISPR/Cas9建立了世界上首例长寿基因敲除猴模型(Nature 2018)。

  本次遗传增强人类血管细胞的获得,是继2007年刘光慧团队创建国际首例抵抗细胞衰老和癌变的遗传增强人类干细胞(Cell Res 2017)之后,人类细胞功能增强策略应用于再生医学研究领域的又一次突破。这些研究成果均表明,人类基因组的遗传密码可以被创造性改写,并有望被安全有效地应用于疾病治疗。

  该研究工作由中科院生物物理所、中科院动物所、中科院干细胞与再生创新研究院、北京大学、首都医科大学宣武医院等机构合作完成。刘光慧、汤富酬以及曲静为共同通讯作者。生物物理所硕士研究生颜鹏泽和北京大学博士研究生李晴晴为并列第一作者。该项目得到科技部、国家自然科学基金委和中科院战略科技先导专项的支持。

图片.png

图:FOXO3功能增强可延缓血管衰老,增强应激抵抗并防止细胞癌变


相关文章

科研人员建立植物基因组引导编辑技术体系

基因组编辑技术可以定向修饰植物基因组,从而大大加速植物育种的进程,是实现作物精准育种的重要技术突破。然而,作物的许多重要农艺性状是由基因组中的单个或少数核苷酸的改变或突变造成的。基于CRISPR/Ca......

美国一项研究利用CRISPR打开DNA来消除疾病

一种蛋白质编辑辅助因子正在为剪切和粘贴DNA编辑器(如CRISPR)访问以前无法访问的感兴趣基因扫清道路。打开这些遗传密码的区域对于提高CRISPR的效率和迈向未来的、基于基因的疾病治疗是至关重要的。......

新型基因编辑复合物的作用机理

在一项新的研究中,来自美国哥伦比亚大学的研究人员捕捉到一种由对现有的基于CRISPR的工具进行改进而产生的新型基因编辑工具的首批结构图片。他们在霍乱弧菌中发现一种独特的“跳跃基因”并且这种跳跃基因可以......

Nature:从结构上揭示一种新型基因编辑复合物的作用机理

在一项新的研究中,来自美国哥伦比亚大学的研究人员捕捉到一种由对现有的基于CRISPR的工具进行改进而产生的新型基因编辑工具的首批结构图片。他们在霍乱弧菌中发现一种独特的“跳跃基因”并且这种跳跃基因可以......

基因“剪刀”可用于诊断疾病

CRISPR/Cas技术不仅可以改变基因:根据弗莱堡大学的一项研究,通过使用所谓的基因剪刀,可以更好地诊断癌症等疾病。在这项研究中,研究人员介绍了一种微流控芯片,该芯片可识别RNA的小片段,从而比目前......

临床多重耐药菌基因组编辑研究取得进展

直接在临床分离的多重耐药菌中进行功能基因组学研究是解析耐药机制以及开发抗耐药策略最直接有效的方法。然而,由于缺乏能在临床耐药菌中直接进行高效基因编辑的工具,目前耐药机制仍主要是采用组学分析加在模式菌中......

NatCommun:缺乏长寿基因反而更健康?

在一项新的研究中,来自美国匹兹堡大学医学院和纽约州立大学的研究人员指出当一个延长秀丽隐杆线虫寿命的基因被移除时,这种突变线虫抵抗细菌感染的时间是携带这个基因的线虫的两倍。这个称为TCER-1的基因是产......

新型腺嘌呤碱基编辑器可让细胞RNA编辑最小化

在一项新的研究中,来自美国布罗德研究所和哈佛大学的研究人员发现有证据表明使用碱基编辑器会导致细胞中出现意想不到的RNA编辑。相关研究结果发表在2019年5月8日的ScienceAdvances期刊上,......

基因编辑技术导致病毒产生抗性?

根据阿尔伯塔大学(UniversityofAlberta)、比利时列日大学(UniversityofLiege)和瑞士联邦理工学院(SwissFederalInstituteofTechnology)......

频频被“泼冷水”CRISPR/Cas基因编辑未来究竟何去何从?

CRISPR/Cas这项基因编辑技术自从问世以来,已经吸引了无数欢呼和掌声,在短短几年之内,它已经成为了生物科学领域最炙手可热的研究工具。然而它最近也频频被“泼冷水”,那么基因编辑未来究竟何去何从呢?......