发布时间:2019-08-10 18:15 原文链接: TEMSpecimenPreparation:PreparativeTechniquesfortheTEM


For routine transmission electron microscopy (TEM), it is generally accepted that specimens should be thin, dry and contain molecules which diffract electrons. Biological specimens, which are large and consist of large amounts of water, also do not defract electrons and are therefore difficult to see in the TEM. Preparing biological specimens for the TEM, whilst retaining the structural morphology of the material, is a challenge. However, researchers have been looking at biological material for many years, and many protocols exist which allow us to look at biological material in many different ways. Below is a brief outline of some of the more common ways of looking at biological samples in the TEM.

Whole mounts

Small or very thin objects can be examined directly by mounting them onto a support film and introducing them directly into the electron beam. Contrast is provided by heavy metal precipitation in one of three ways.

  1. Positive staining: The object is chemically stained with a solution of the metal salt and appears dark on a bright background.

  2. Negative staining: The object remains unstained but is embedded in a dried film of the heavy metal salt. The specimen appears light on a dark background. This method of visualization has been used extensively in the study of virus particles but is also useful for cell fractions (e.g. coated vesicles). More details can be found here.

  3. Shadowing: A thin layer of heavy metal atoms is deposited on the specimen by evaporation in a vacuum chamber. Shadowing from one direction only produces a pseudo-three-dimensional image. Rotary shadowing, where the specimen is uniformly coated with heavy metal, is used to visualize nucleic acids and proteins. 

Ultrathin sectioning

The most popular technique for examining biological materials is to embed the material under study in plastic and cut ultrathin sections that can be examined in a TEM. The material is stabilized by chemical fixation (usually with aldehydes such as formaldehyde or gluteraldehyde), contrasted with solutions of heavy metal salts (osmium tetroxide and uranyl acetate), dehydrated in ethanol or acetone, and embedded in plastic (epoxy resin). Ultrathin sections (60 nm) cut with glass or diamond knives using an ultramicrotome are floated on water, transferred to specimen support grids and examined in the TEM. Often the sections are further contrasted with uranyl acetate and lead citrate prior to examination in the microscope.

In some cases, macromolecules can be specifically labelled prior to embedding and sectioning. For example, the location of some enzymes can be visualized by incubating the tissue with a substrate whose reaction with the enzyme leads to the local deposition of electron opaque material. Alternately, antibodies can be coupled to such enzymes, and the electron opaque reaction product is used to localize the antigens recognized by the antibodies. Some embedding resins (e.g. Lowicryl resins and LR White resin) have been designed to enable antibodies and electron opaque markers (such as colloidal gold particles) to be applied to the ultrathin sections. In this way, subcellular antigens recognized by the antibodies can be localized with the TEM.

Another sectioning technique that is increasing in popularity iscryosectioning (the sectioning of vitrified, frozen material). After chemical fixation, the tissue is immersed in cryo-protectant (usually sucrose) and then quickly frozen in liquid nitrogen. The cryo-protectant allows the biological material to be frozen without the formation of ice crystals, which would damage ultrastructure. This type of freezing, or vitrification, is possible in the absence of cryo-protectants but is technically demanding. Sections cut from the vitrified block can be thawed and incubated with antibodies specific to subcellular antigens. Electron opaque markers allow the antibodies to be seen in the TEM.

Colloidal gold coupled to protein A (a protein from bacterial cell walls which binds to the Fc portion of some immunoglobulins) has been used extensively in recent years to localize antibodies on resin and frozen sections of biological materials. The ability to produce homogeneous populations of colloidal gold with different particle sizes has enabled researchers to use these probes to colocalize different structures on the same section.

Cryofixation

It is possible to freeze biological material fast enough to vitrify the water present inside the cells. Vitrification of water occurs when the freezing has occurred so fast that ice crystals have no time to form. Vitrified biological material can be sectioned at low temperatures. Thin films of vitrified water and sections of vitrified material can be examined in transmission electron microscopes that are equipped with specimen stages that can be kept cold.

Rapid Freezing Methods

There are seven main rapid freezing methods presently available. They are

  1. immersion freezing - the specimen is plunged into the cryogen.

  2. slam (or metal mirror) freezing - the specimen is impacted onto a polished metal surface cooled with liquid nitrogen or helium.

  3. cold block freezing - two cold, polished metal blocks attached to the jaws of a pair of pliers squeeze-freeze the specimen.

  4. spray freezing - a fine spray of sample in liquid suspension is shot into the cryogen (usually liquid propane).

  5. jet freezing - a jet of liquid cryogen is sprayed onto the specimen.

  6. high pressure freezing - freezing the specimen at high pressure to subcool the water.

  7. excision freezing - a cold needle is plunged into the specimen, simultaneously freezing and dissecting the sample.

Freeze-fracture followed by freeze etch and replication

If, for some reason, the object to be studied cannot be examined in the TEM, then a thin replica can be made. This is usually made by evaporating a thin layer of a heavy metal (usually platinum) onto the specimen and then coating this with a thin layer of carbon. The object and the replica are separated either by floating off the replica or by digesting away the object. There are four basic steps to follow

  1. The specimen is frozen (often without regard to vitrification).

  2. The specimen is fractured, while still frozen, under vacuum.

  3. The fractured specimen can then be etched by leaving it frozen and under vacuum. Depending on the time of exposure, more or less water sublimes from the specimen (freeze drying).

  4. A replica of the fractured surface is made which is then examined in the electron microscope.

A recent modification of this method employs rapid freezing achieved by slamming cells against a copper block cooled to -269°C with liquid helium. If these frozen cells are then exposed to extensive freeze drying (deep etching), very impressive images of the internal structures of cells are uncovered.


相关文章

190亿!赛默飞收购欧洲IVD巨头

近日,服务科学领域的全球领导者赛默飞世尔科技(以下简称赛默飞)宣布,在达成收购意向两个月之后,赛默飞以28亿美元、折合人民币约190亿元的价格,完成了对TheBindingSiteGroup的全现金收......

施普林格·自然与TheLens达成合作

11月15日,施普林格·自然和TheLens平台宣布结成重要的合作伙伴关系,以更深入地揭示学术研究和数据如何能通过经济和社会成效,加速推动创新的问题解决方式。通过将科学、投资和企业领域的开放数据更好地......

透射电镜市场概况和主要品牌

分析测试百科网讯据最新报告显示,2020年至2024年全球透射电子显微镜(TEM)市场规模预计将增长3.597亿美元,复合年增长率接近10%。2020年的同比增长为8.31%,2020年预计为3.50......

TEM的多级衍射原理是什么

透射电子显微镜(Transmissionelectronmicroscope,缩写TEM),简称透射电镜[1],是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生......

sem和tem区别是什么

扫描电子显微镜(SEM)是一种介于透射电子显微镜和光学显微镜之间的一种观察手段。其利用聚焦的很窄的高能电子束来扫描样品,通过光束与物质间的相互作用,来激发各种物理信息,对这些信息收集、放大、再成像以达......

3分钟了解TEM的测试要求

做TEM测试时样品有什么要求?很简单,只要不含水分就行。如果样品为溶液,则样品需要滴在一定的基板上(如玻璃),然后干燥,再喷碳就可以了。如果样品本身导电就无需喷碳......

连看三大世界大学排名榜我国哪所大学是排名的“宠儿”?

6月10日,QS教育集团正式发布了2021年世界大学排名,中国共有83所高校上榜,包括内地高校51所,港澳台地区高校32所。中国大学的总体排名情况已经连续数年呈上升趋势,今年再度刷新了榜单。大学排名,......

使用TEM揭示FeOOH晶相结构及晶相依赖的电化学分析行为

近期,中国科学院合肥物质科学研究院智能机械研究所研究员黄行九课题组博士后杨猛与副研究员林楚红合作,利用透射电子显微镜(TEM)旋转模式研究了不同晶相FeOOH纳米棒的横截面结构并阐明其晶体生长方向;结......

2019牛津仪器发现微观之美大赛艺术与技术的完美结合

分析测试百科网讯2019年11月17日,2019牛津仪器纳米分析技术论坛在美丽的边城云南腾冲召开,来自全国200多位牛津仪器用户参加了本届论坛。本届论坛前期,牛津仪器组织了2019牛津仪器发现微观之美......

日立高科投资VironovaAB强化透射电子显微镜产品组合

分析测试百科网讯日立高科技公司(TSE:8036/HitachiHighTech)与VironovaAB(总部:瑞典斯德哥尔摩/CEO:MohammedHomman/Vironova)进行了第三方股份......