发布时间:2019-08-26 17:00 原文链接: 揭示胚胎发育过程中组织水平下的调控机制

  在胚胎发育过程中,其会产生正确的3D体型(称之为形态发生过程),同时还需要进行组织重塑,细胞片会折叠并改变其几何形状,其经历的变化相当于折纸的复杂性;在早期胚胎中,形成肌肉组织(中胚层)和肠道组织(内胚层)的细胞会向内运动,外层的细胞会形成皮肤组织,日前,一项刊登在国际杂志Nature上的研究报告中,研究者Bailles等人报道了细胞内化的新型分子机制,其正如研究人员对黑腹果蝇(Drosophila melanogaster)研究所得到的结果。

  如今研究人员对黑腹果蝇中胚层内化的研究已经建立了细胞特性与细胞发育期间所发生的物理变化之间的分子关联,蛋白质Twist能够调节基因表达从而赋予肌肉的身份,而表达该蛋白的细胞则在保持与邻近细胞接触的同时,收缩其外表面(顶端),这种顶端收缩所引发的组织屈曲会驱动细胞的内化作用,因此,内化在中胚层中是固定的,但其也会产生一定的驱动力,从而影响附近非中胚层的细胞。中胚层的内化与其它细胞内化在发育过程中是否相同呢?尤其是当许多形态发生事件同时发生时,为此研究人员Bailles及其同事回答了这一问题。

  内胚层细胞会内化形成整个内胚层组织(约15行细胞的圆形斑块),从而向早期胚胎的头部区域移动,利用活细胞成像显微镜技术及数学模型所支持的实验性手段,研究者发现,内胚层中有两个不同的区域,其内化机制是并不相同的。研究者称之为原基区域的内胚层部分是第一个发生内化的,其就像中胚层内化一样,这是通过一个直接被基因表达所调节的过程来发生的。蛋白质Fog的表达会导致细胞顶端区域非肌球蛋白(MyoII)和RhoI蛋白水平增加,从而通过重构细胞骨架来引起细胞顶端发生收缩,研究者观察到,局部的Fog活性会导致原基区域所有细胞同时收缩和内化。

图片来源:Bailles et al.

  在内胚层的另一部分—传播区(propagation region),内化则是逐步发生的,其会一次形成一排细胞;研究者意外地发现,如果转录被抑制或Fog蛋白的局部来源丢失的话,当原基区域开始收缩时,传播区的内化仍然会发生,将传播区的内化速率与Fog扩散的最大估计速率对比后,就能够帮助研究者排除Fog扩散作为解释如何控制内化过程了。

  随后研究者分析了是否机械影响会发挥作用,他们利用物理方法来阻碍组织运动,利用基因方法来改变胚胎几何形态或利用药物来抑制MyoII,研究结果表明,传播区的内化是通过一种机械正反馈系统来进行的,外部物理压力所引发的轻度细胞变形会通过经历内化的邻居细胞来传递,其会诱发非内化细胞的顶端区域中MyoII的积累,这种积累会驱动细胞性状的改变,进而增加机体压力,并促进MyoII积累,直至细胞收缩达到引起细胞内化的水平,邻近细胞之间的机械耦合会通过连接细胞的粘着连接蛋白复合体所介导,从而才能够确保驱动力在整个组织中传递,进而推动传播区逐渐发生内化。

  如今研究人员在其它实验系统中已经描述了胚胎发育的机械调节机制,然而,研究人员仍然很难证明是否作用在细胞上的机械力是发育过程中的原因或是结果,尽管研究人员很难评估体内的机械输入,但他们对整个胚胎进行研究或许就能够证明,机械力就是发育最直接的调节子。内胚层区域的细胞在内化发生前都具有内胚层身份的分子特征,尽管有这样的相似性,为何这些区域会使用独特的内化机制呢?这或许是因为,如果整个内胚层同时收缩的话,胚胎的几何形状就会受损,另一种可能性则是,这些区域之间机械敏感性的差异会为应对外部事件的力量提供缓冲。

  机械调控在传播区的内化过程中扮演着非常关键的角色,这或许能进一步阐明其在局部基因表达中的作用。研究人员分析了果蝇的卵黄膜是否会影响传播区的内化作用,胚胎和卵黄膜之间的相互作用会提供一种机械力的来源;研究者表示,动态粘附在形态发生的不同状况下发挥着至关重要的作用,而如今研究人员已经证实了整合素介导的卵黄膜粘附的具体分子机制。

  未来研究人员还需要进行更为深入的研究来改善他们在分子和细胞水平下对形态发生分子机制的理解,这或许能帮助揭示机械调控和基因调控之间相互作用发生的机制,相关研究结果或许也能够提供控制不同组织和物种中胚胎形态因素的完整画面。


相关文章

Nature:新研究定量确定发育中的胚胎内的细胞基因活性变化的细节

在一项新的研究中,来自美国华盛顿大学的研究人员开发出一种技术,可以定量确定斑马鱼胚胎中发生的基因活性变化,这些变化是对关键基因的特定编辑做出的反应。这种方法可以定量确定数千个胚胎中数百万个细胞在发育过......

国家市场监管局发布全国认证数据统计

10月12日,国家市场监督管理总局发布《全国认证数据统计》2023年2季度:管理体系认证项目统计证书数1918444,占比53.96%;组织数852525,占比77.79%。产品认证项目统计证书数15......

科学家揭开加速机体脂肪组织衰老的新型机制

脂肪组织在控制机体代谢稳态中发挥着核心作用,而机体中脂肪组织保存的失败与年龄相关的代谢性障碍直接相关,成熟脂肪组织在这种现象中所扮演的关键角色,目前研究人员并不清楚。近日,一篇发表在国际杂志Natur......

人类发育中胚胎最高分辨率图像

现有许多荧光标记活细胞的方法都涉及对细胞的基因修饰,因此不适用于研究人类活胚胎。而在最新发表于《细胞》(Cell)上的一项研究中,研究者使用了一种无需基因修饰的荧光染色技术,并首次捕捉到了分辨率达细胞......

以色列一公司研发AI优选胚胎技术 可提高试管婴儿成功率

以色列一家生殖科技公司日前研发出一种人工智能(AI)优选胚胎技术,可有效提高试管婴儿成功率。美国福克斯新闻网12日报道称,该技术通过AI软件对体外受孕的胚胎进行筛选,从而提高胚胎移植后的着床成功率。这......

母乳让心肌细胞能“吃”脂肪

生物活着的每一秒,心脏都在跳动。构成心脏的心肌细胞是当之无愧的耐力型选手,它们通过收缩使心脏跳动。此前的研究发现,胚胎心肌细胞主要靠燃烧葡萄糖和乳酸获得能量。一旦成熟,它们就转为依靠燃烧脂肪酸(脂肪的......

可溶解的导管缝合线可以监测伤口并输送药物

从取自猪组织的纤维开始,麻省理工学院(MIT)的研究人员已经开发出可以装载分子传感器或药物的溶解缝合线。希望这种新的缝合线能够加快愈合速度和/或在手术部位出现问题时发出指引。根据佩加蒙的外科医生盖伦的......

食蟹猴胚胎3D长时程体外培养模型

2023年5月11日,中国科学院动物研究所/北京干细胞与再生医学研究院和美国宾夕法尼亚大学的研究人员在《细胞》杂志在线发表封面文章。他们建立了一个可支持食蟹猴胚胎体外发育至受精后25天的3D长时程培养......

揭开软骨鱼活产的神秘面纱

胎生,或生下活的幼仔的能力通常与哺乳动物有关。然而,这种繁殖方式在各种脊椎动物中已经进化了多次,有150多次单独出现。这包括爬行动物中的100多例,骨鱼中的13例,软骨鱼中的9例,两栖动物中的8例,以......

2023社会组织服务科技创新发展论坛在京举办

4月11日,2023社会组织服务科技创新发展论坛暨惠企服务月启动仪式在京举办。北京市科委、中关村管委会二级巡视员赵清,北京市社会组织管理中心副主任庞庆涛,中关村产业技术联盟联合会荣誉理事长梅萌,中关村......