发布时间:2012-08-24 07:59 原文链接: 8月23日《自然》杂志精选

 

  完美“库仑拖拽”的实验演示

  从一个导体中流过的电流,能够通过被称为“库仑相互作用”的电子—电子排斥力在另一个与第一个在空间上分开的导体中诱导产生电流。这样所产生的“拖拽电流”通常较小,但人们一直认为,在某些情况下这一电流有可能与驱动电流具有相同的量级。现在,这一预测通过在一个双层二维电子系统中对“完美”拖拽的演示得到了证实。在该系统中,一层电子被耦合到有相同数量空穴的另一层电子上,它们一起能够形成一个激子凝聚态。本文作者们明确认为,第一层中的电子流能在第二层中驱动产生一个相等的、但相反的电子流。

  大气中乙烷水平的长期下降

  乙烷是遥远大气中最丰富的非甲烷烃类,是对流层臭氧的一种前体。这篇论文提供了迄今所建立的全球大气乙烷水平的最长连续记录,发现全球乙烷排放速度在1984年和2010年间下降了21%。这一结果也许可以归因于偶然性排放(如天然气从油井中的喷发和燃烧等)的下降,而不是乙烷其他主要来源(如生物燃料的使用及生物质的燃烧)的下降。因为甲烷与乙烷主要排放源相同,所以乙烷的这一新的长期记录可用来研究全球甲烷水平的变化。基于这种想法,本文作者提出,偶然性化石燃料排放量的减少也占全球甲烷排放量减少的30%~70%。

  家族性“肌萎缩性侧索硬化”的遗传学研究

  在神经退化疾病“肌萎缩性侧索硬化” (ALS)的近一半家族性病例中,疾病的遗传基础仍不知道。本文作者发现,profilin 1 (PFN1)基因(它是将单体肌动蛋白转化成细丝状肌动蛋白所必需的)的突变会引起家族性ALS。现有数据表明,细胞骨架通道的改变有助于ALS的发病。对ALS中PFN1突变所做的观察对于家族性ALS病例的诊断性测试有直接意义,并且还为ALS的治疗提供了一个新的潜在目标。

  固体肿瘤的克隆分析

  采用基因系追踪,Cedric Blanpain及其同事首次以克隆方式对一个未受扰动的固体肿瘤中的肿瘤细胞进行了活体追踪研究。在一个由致癌物诱导产生的乳头瘤小鼠模型中,他们发现,这些良性病灶中的细胞映射了正常组织中的克隆层级组织。只有少部分具有较高增殖潜力的乳头瘤细胞能够维持第二个、循环速度较慢的群体,后者产生形成大部分乳头瘤的差异化的肿瘤细胞。但当病灶发展成鳞片状细胞癌时,会转化为以自我更新为主的细胞分裂和有限的细胞分化,说明这些细胞也许代表着一个癌症干细胞群。关于癌症干细胞(能够维持肿瘤生长的一类肿瘤细胞)的证据以前只在移植实验中在固体肿瘤中演示过。

  对低磷土壤有耐受性的水稻

  水稻是亚洲很多地方的主要粮食作物。但该地区的水稻存在诸多问题,如产量低、磷肥供应有限、雨水栽培系统易受气候变化影响等等。在这项研究中,Sigrid Heuer及其同事报告了对一个被称为“磷缺乏耐受性-1”(PSTOL1)的基因(它使水稻对缺磷产生耐受性)的定性。该基因存在于传统水稻品种 Kasalath中,但在水稻参照基因组和其他对缺磷无耐受性的现代品种中却没有。PSTOL1被发现对根早期生长起一个增强因子的作用,因而能够使植物获得更多的磷和其他营养物。将这一基因导入本地化的水稻品种中,应能在低磷条件下提高生产力。

  癌细胞的功能性层级

  在一个成胶质细胞瘤小鼠模型中,Luis Parada及其同事利用在神经干细胞(肿瘤就是在这些细胞中出现的)中选择性表达的一种绿色荧光蛋白(GFP)“报告蛋白”,来在一个内生环境中追踪癌细胞。该“报告蛋白”标记了一小类神经胶质瘤细胞,它们的增殖能力没有大部分肿瘤细胞那么强。然而,这些GFP+细胞却造成用细胞毒性药物“替莫唑胺”治疗后肿瘤的再生。GFP+细胞的选择性清除同时配合“替莫唑胺”治疗对抑制肿瘤生长更有效。GFP+细胞似乎处在癌细胞功能性层级的最高端,所以可能代表着癌症干细胞——能够维持肿瘤生长的一类肿瘤细胞。以这一类癌细胞和增殖能力更强的大部分癌细胞同时作为治疗目标,也许能产生更好的治疗效果。

  端粒为什么不能无限变长

  当线性染色体复制时,它们的端部(称之为端粒)会稍微变短。端粒酶是一种专门化的聚合酶,在细胞周期的S-阶段作用于“端粒重复DNA”上,使端粒重新变长大约60个核苷酸。现在,Joachim Lingner及其同事发现,三聚CST复合物与“端粒引子”和POT1-TPP1复合物发生相互作用,抑制S-阶段后期端粒酶活性。这样,不受限制的端粒变长便受到了控制,每个端粒在每个细胞周期中只被端粒酶拉长一次。

相关文章

重磅!今年轰动一时的室温超导《Nature》论文被撤稿

如果超导材料能够在环境温度和压力条件下存在,其表现出的零电阻现象将具有巨大的应用潜力。尽管几十年来进行了大量的研究,但这种状态尚未实现。2023年3月08日,来自美国罗切斯特大学的RangaP.Dia......

《Nature》肌肉研究里程碑:首个高清粗肌丝三维组织

心房颤动、心力衰竭和中风——肥厚性心肌病可导致许多严重的健康状况,是35岁以下人群心脏性猝死的主要原因。心肌是人体的中枢引擎。当然,如果你知道一个坏了的引擎是如何制造和运作的,那么修理它就容易多了。在......

Nature:人造子宫试验快要开始,人造子宫要来了?

2023年9月21日,《Nature》报道:人造子宫的人体试验可能很快就会开始。美国监管机构将考虑对人造子宫的系统进行临床试验,这可以减少极早产婴儿的死亡和残疾。Nature621,458-460(2......

“双非”高校姜昱丞一作发首篇Nature!凝聚态物理新突破

前不久,37岁的姜昱丞首次以第一作者身份发表Nature论文,这也是他所在的苏州科技大学首次在Nature亮相。这篇论文澄清了凝聚态物理领域一个20余年来的误区,并构建了全新理论模型和判定标准。“其实......

跟踪Nature室温超导论文:8位作者指控导师要求编辑撤稿

  在多项重复性研究不支持其结论后,美国罗彻斯特大学迪亚斯团队3月的《Nature》论文再遇危机:该论文11位作者中的8位给《Nature》高级编辑托比亚斯·罗德尔写信称,迪亚斯歪......

事关二氧化碳排放量!清华大学最新Nature

2019年,高能耗的钢铁工业贡献了全球工业二氧化碳排放量的约25%,其对减缓气候变化至关重要。尽管在国家和全球两级讨论了脱碳潜力,但特定于工厂的缓解潜力和技术驱动的途径仍不清楚,这累积起来决定了全球钢......

头发变白的原因找到了!Nature挑战干细胞经典教条

随着年龄的增长,人们的头发会不可避免地变白,也有不少人因为压力或者遗传因素少年白头、早生华发。目前,科学家了解到与头发黑色素产生相关的黑素细胞干细胞(McSCs)比其他成体干细胞群更早失效,这会导致头......

最新!这篇Nature正刊文章被撤回

大约一半人为排放的二氧化碳留在大气中,一半被陆地和海洋吸收。例如,如果由于海洋变暖或永久冻土融化,陆地和海洋吸收碳的效率降低,那么更大比例的人为排放将留在大气中,从而加速气候变化。碳汇效率的变化可以通......

颠覆认知!Nature子刊:中国科大团队对药物递送屏障的重大发现

从脉管系统到肿瘤的有效纳米治疗运输对于最小化副作用的癌症治疗至关重要。2023年9月14日,中国科学技术大学王育才、江维及新加坡国立大学DavidTaiLeong共同通讯在NatureNanotech......

NatureMethods:北大汤富酬团队揭示单个细胞内高阶染色质结构

调控基因组元件的高阶三维(3D)组织为基因调控提供了拓扑基础,但尚不清楚哺乳动物基因组中的多个调控元件如何在单个细胞内相互作用。2023年8月28日,北京大学汤富酬团队在NatureMethods(I......