发布时间:2020-04-21 20:48 原文链接: 基因修饰小鼠(GEM)模型在肿瘤学研究中的应用(二)

最近,CRISPR/Cas9系统也应用于靶基因的抑制(CRISPRi)或激活(CRISPRa)的遗传修饰。这类修饰系统可用于研制相应致癌基因,和/或抑制TSGs基因的诱导和可逆激活小鼠模型。比如借助CRISPRa为基础的系统,通过激活致癌基因的转录,达到研究其致癌潜力的目的。

虽然CRISPR/Cas9为基础的基因编辑系统非常具有潜力,但该系统应用于体内基因编辑也存在一定的缺陷,比如,目前该系统策略不适合于验证潜在致癌基因的致癌潜力。另外,将Cas9导入体细胞的基因编辑方式,可引起Cas9特异性免疫反应,导致Cas9表达细胞有被清除的可能性。为了避免这些可能的潜在风险,可选择在免疫缺陷小鼠体内进行相应的实验,或通过基因修饰方法,首先获得对Cas9具有免疫学耐受小鼠模型后,再开展相应的动物实验。最后,虽然已有报道表明,应用引起DNA单链断开的可诱导Cas9n缺口酶,可以降低其脱靶效应, 但研究者在实际应用中必须有清晰认识,要想完全避免由CRISPR/Cas9介导的非设计所需要的脱靶突变是很难的。

3. 肿瘤病人相关位点的改善肿瘤模型

构建理想的肿瘤病人相关突变模型,对研究靶基因在肿瘤发生过程中的作用,以及有效评价药物效应就显得很有必要性与实际意义。因为在人肿瘤抑制基因(TSGs)中,许多具有肿瘤形成依赖的生殖细胞突变和体细胞突变都是错义或无义突变,从而导致突变产物或可能带有功能截短蛋白的形成。这类突变现象是难以通过条件性敲除小鼠模型来实现的,因为条件性基因修饰策略是将靶基因中某个或几个外显子完全敲除,达到灭活靶基因功能。一些研究结果已经表明,参照肿瘤病人相关TSG突变构建的小鼠突变模型,可产生与靶基因完全敲除不同的表型。比如,与Trp53基因敲除小鼠比较,病人相关的Trp53热点突变小鼠表现有更加明显的致癌活性。

同样,构建BRCA1乳腺癌病人相关的Brca1基因突变的条件性小鼠模型研究表明,与Brac1完全敲除小鼠模型相比,因Brac1基因中特定RING区域引入突变而引起的乳腺肿瘤,更容易对那些破坏DNA的药物产生耐受性,因为其BRCA1蛋白含有较少的RING活性的缘故。研究也证实,由于突变导致Brac1蛋白含有较少的RING活性 ,表现为更容易对那些破坏DNA的药物产生耐受性,该结果有助于揭示这些突变与治疗反应效果之间的因果关系。

GEM模型在肿瘤学研究中的应用范围

作为原发肿瘤发生的GEM模型,可成为体内分析包括肿瘤形成,发展及转移中肿瘤形成等过程中细胞本身与细胞间相互作用的系统选择。人肿瘤GEM模型也已成功应用于验证候选药物靶点,评估治疗效果,以及评价药物耐受机制等方面。由于GEM模型是在具有完整免疫系统的小鼠体内形成原发肿瘤,因此,该类模型更适合潜在肿瘤免疫治疗的探索性研究。建立基因修饰小鼠模型与人疾病紧密相关性研究的策略与方法,为探索与开发肿瘤治疗新方法与策略提供了有意义的应用平台。也为设计和开发新抗肿瘤治疗,提供了临床治疗效果等相关信息。GEM模型在以下几个方面对肿瘤生物学及转化肿瘤学等研究进展及贡献中发挥了重要作用。

1. 验证潜在癌基因

在大量肿瘤样品测序研究获得不断增加的潜在肿瘤基因基础上,建立体内快速验证这些潜在肿瘤相关基因的策略是非常必要和有实际意义的。考虑到速度和相对简单化因素,GEM-ESC和CRISPR/Cas9技术可作为快速验证潜在肿瘤基因的首选方法。特别是应用基于体细胞的CRIPPR/Cas9介导的基因编辑技术,建立非遗传修饰的小鼠模型,实现高通量体内验证潜在肿瘤基因的目的。比如,应用DNA注射与活体电穿孔相结合的转染方法,将引起胰腺管腺癌(PDAC)的13个不同的主要肿瘤抑制相关基因的15个gRNAs/Cas9表达质粒混合物一起导入成熟小鼠的胰腺,构建同时修饰此13个基因的小鼠模型。结果显示,此PDAC小鼠有超过60%的这些靶基因显示基因敲除,提示CRISPR/Cas9介导的突变诱发了肿瘤的形成。同样,利用Dox诱导Cas9表达的GEM模型也被用于验证已知的多种肠道肿瘤基因(如Apc和Trp53)。除了修饰TSGs, CRISPR/Cas9技术还应用于验证染色体重排的致癌性,如在肺癌病人观察到的Eml4-Alk基因的融合现象。

另外,应用GEM模型对来自临床病人并筛选获得的候选潜在癌基因进行验证,也已成为研究肿瘤相关基因功能的常用策略。例如,最近胡卓伟教授课题组通过构建条件性过表达和敲除GEM模型,研究假激酶Trib3基因在促进急性早幼粒细胞白血病(APL)形成中的作用,结果表明,同时在小鼠骨髓细胞中特异性表达或敲除Trib3与 致癌蛋白PML-RARa (PR) 融合基因,Trib3基因可显著增加PR诱发APL形成的作用。而吕毅教授课题组则是通过构建Y染色体性别决定区(Sry) 基因特异性表达的GEM模型,首次证实了在肝组织内特异性过表达Sry基因雄/雌小鼠对化学致癌剂(DEN)诱导小鼠肝细胞癌(HCC)形成更加敏感,提示Sry基因在HCC形成过程中发挥了重要的促进作用。

2. 研究致癌基因的依赖性

致癌基因依赖现象是指某些肿瘤形成完全依赖于单一致癌基因。由于条件性GEM模型对基因的修饰是不可逆的,因而不适合研究致癌基因依赖性。因此需要选择不同的调控诱导策略进行相应的研究,例如将致癌基因与ERT融合达到控制其表达的目的。有研究报道,将Trp53-ERT变异体取代内源Trp53建立的纯合敲入小鼠,该Trp53-ERT小鼠只有在Tamoxifen存在条件下,诱导Trp53的表达,并在已形成肿瘤小鼠模型的基础上,研究再恢复p53功能后对已有肿瘤的影响。研究结果表明,在Eu-Myc引起的淋巴瘤基础上,恢复Trp53活性可产生快速细胞凋亡,明显增加小鼠的存活率。另外,多西霉素(Doxycycline,Dox)调控基因表达的可逆诱导系统也被应用于GEM模型的建立,通过该系统诱导人MYC原癌基因的表达后,引起肿瘤的形成。在关闭MYC基因表达后观察,导致原癌基因失活后,已形成的肿瘤的相应反应。该研究是应用Dox的Tet-off诱导系统,持续在小鼠造血干细胞中特异表达人MYC转基因,诱导小鼠形成恶性T细胞淋巴瘤和急性髓系白血病,在此基础上,如果通过添加Dox诱导剂使MYC表达停止后,发现已表现出的肿瘤表型也随之消弱,并证实此过程与肿瘤细胞周期死亡有关。研究也发现,对于此可逆诱导系统中停止激活MYC表达后的长期效果,不同的肿瘤类型是有区别的。如在骨肉瘤中短暂抑制MYC表达,因为肉瘤细胞分化为成熟的骨细胞,所以会出现肉瘤持续萎缩的现象。相反,虽然MYC表达抑制会引起肝癌出现弥漫性的萎缩,但是,存留的肿瘤细胞仍处于潜伏状态,并在重新开启MYC表达后,可以很快恢复其肿瘤特征。

3. 破解自发性转移形成机制

尽管有不断改善的肿瘤治疗选择策略,转移疾病仍然是引起癌症死亡的主要原因。转移过程是通过肿瘤细胞与肿瘤微环境相互持续作用而形成的复杂的多步骤过程。过去绝大多数的临床前转移研究是借助细胞系接种模型来实施的,而这类模型不能真实反映肿瘤病人的转移过程。GEM模型可引起原发肿瘤发展和转移形成,因而是研究过去未知的肿瘤自发转移形成过程不可缺少的工具。由于原发肿瘤的过度生长,在大范围转移形成之前,小鼠一般不得不被处死,这也是GEM模型潜在的不足之处。这一局限可以通过将GEM来源的肿瘤组织进行原位移植的方式解决,比如通过手术移植方式,达到保留供体肿瘤的肿瘤内异质性效果,使其转移过程的发生接近临床上的常见转移疾病。

应用GEM模型研究肿瘤转移过程已获得了某些重要的发现。过去的研究认为肿瘤转移是发生在肿瘤形成过程晚期。然而,通过BALB-NeuT和MMTV-PyMT小鼠乳腺肿瘤模型的研究表明,来自早期的损伤转染细胞已经具有传播至骨髓和肺组织而形成微小转移瘤的能力。另外,上皮细胞至间叶细胞间的转移(EMT)被认为在肿瘤细胞传播和转移方面起到了非常重要的作用。然而,应用胰腺癌和乳腺癌GEM模型的研究表明,肿瘤细胞不仅保留了其上皮细胞特征,却还能在转移病灶位置出现,提示EMT在这些模型中的肿瘤转移形成并不是必须的。再有,在探索肿瘤转移形成过程中,肿瘤细胞与免疫系统之间复杂关联方面,GEM模型明显发挥了突出的关键作用。例如,骨髓免疫细胞,如巨噬细胞和中性粒细胞,在促进不同种癌症的转移形成方面,起到了至关重要的作用。最近有研究报道表明,乳腺肿瘤引起系统炎症,即由IL17-产生的T细胞及继发的免疫抑制中性粒细胞的扩增,可引发小叶乳腺癌GEM模型的自发性转移形成,导致GEM移植模型的自发转移疾病。

GEM模型在揭示相关基因参与抑制肿瘤转移机制方面也发挥了重要作用。最近,刘宝华课题组应用Tet-ON可诱导Sirt7表达的GEM模型,揭示了Sirt7抑制原发胰腺癌转移作用机制,该研究结果证实,由Dox诱导表达的Sirt7具有明显抑制MMTV-PyMT小鼠乳腺肿瘤肺转移的作用,且其作用机制是通过调节TGF-β信号通路实现的。

因此,GEM模型在揭示肿瘤转移复杂性,挑战当下普遍接受的理论(即肿瘤转移是晚期癌症细胞包括EMT在内的转移过程)等方面,都发挥了不可缺少的作用。这些重要的发现有可能为转移癌症病人的治疗提供重要的参考依据。

4. 研究肿瘤微环境作用

在揭示肿瘤细胞外部因子(如癌症相关成纤维细胞(CAFs) 和免疫细胞)如癌症相关成纤维细胞(CAFs) 和免疫细胞与肿瘤形成过程等作用方面,GEM模型已发挥了不可取代的作用。CAFs可通过合成细胞外基质(ECM)成分(如胶原蛋白,纤维连接蛋白,层粘连蛋白)来调控ECM和基底膜形成。而且,CAFs是各种可溶性介导物包括基体金属蛋白酶(MMPs)的来源, 在促使ECM转化,加强其在维持ECM动态平衡方面有着重要作用。GEM模型研究已表明,CAFs在肿瘤形成过程中具有双重作用。利用K4-HPV6鳞状皮肤癌小鼠模型研究发现,在上皮细胞恶性癌转化过程中,CAFs能通过增强炎症,血管形成,以及ECM重新组成,从而刺激肿瘤的发展。

相反,通过两个独立的胰腺癌GEM模型的研究表明,在体内抑制CAFs具有加速肿瘤形成过程的效果,提示CAFs对肿瘤的阻止作用。如此相互矛盾的现象对于免疫细胞来说则是可以理解的,起初免疫细胞被认为是可通过攻击转化肿瘤的细胞,抑制肿瘤形成过程。然而,最近的研究表明,这些免疫细胞也具有促进肿瘤的功能。应用小鼠模型对一些不同的肿瘤类型的研究已揭示了炎症与肿瘤之间的相互关系。例如,应用大肠炎相关癌症的小鼠模型,在髓系免疫细胞中特异性敲除NF-jB信号系统后,减缓小鼠肿瘤生长,表明其具有促进肿瘤的作用。

另外,K4-HPV6小鼠模型研究也表明,肥大细胞与骨髓来源细胞借助MMP9激活血管生成和重新调整基质结构等方式,发挥其促进鳞状皮肤癌形成作用。应用同样的皮肤癌症模型发现,慢性炎症有促进新生肿瘤形成的作用。至此,人们已经开始对炎症诱导肿瘤的相关巨噬细胞和中性粒细胞的促进作用进行研究。例如,在MMTV-PyMT乳腺癌小鼠模型基础上,将一种重要的巨噬细胞相关基因CSF1 (Colony-stimulating factor1 )敲除后发现,该小鼠的乳腺肿瘤恶性化过程被延缓。同样,抑制CXCR2(一种介导中性粒细胞迁移的趋化因子)则有抑制APC小鼠的肠道肿瘤形成的效果。总之,这些研究强调了免疫细胞在肿瘤发生与发展过程中,发挥了协同参与调控的作用。