发布时间:2020-05-11 10:56 原文链接: 为什么细胞培养需要用二氧化碳培养箱?(一)

一般细胞培养液的pH在7.0-7.4之间。由于碳酸盐pH缓冲系统是一种生理pH缓冲系统(它是人体血液中最重要的pH缓冲系统),所以大多数培养液用它来保持稳定的pH。用粉末配制培养液时,常常需要加入一定量的碳酸氢钠。对大多数以碳酸盐作为pH缓冲系统的培养液而言,以为了维持稳定的pH,培养箱中的二氧化碳需要维持在2-10%之间,以保持培养液中溶解的二氧化碳的浓度。同时细胞培养的器皿需要一定程度的透气,以便于气体的交换。

是不是采用其他pH缓冲系统就不需要二氧化碳培养箱了呢?人们发现由于空气中的二氧化碳浓度很低,如果细胞不在二氧化碳培养箱中培养,培养液中的HCO3-会被耗尽,这样会影响细胞的正常生长。所以大部分动物细胞的培养,还是需要二氧化碳培养箱。

在过去的数十年间,细胞生物学、分子生物学、药理学等的研究领域都有了惊人的长足进步,同时,这些领域中的技术应用也不得不跟上“脚步"。虽然典型的生命科学实验室设备有了很大的改变,但二氧化碳培养箱依然是实验室中的主要组成部分,其使用的最终目的都是维持和促使细胞和组织更好地生长。然而,随着技术的进步,其功能和运作都变得越来越精确、可靠和方便。如今,二氧化碳培养箱已成为实验室最普遍使用的常规仪器之一,已广泛应用于医学、免疫学、遗传学、微生物、农业科学、药物学的研究和生产。

CO2培养箱是通过对周围环境条件的控制制造出一个能使细胞/组织更好地生长的环境,条件控制的结果就会形成一个稳定的条件:如恒定的酸碱度(pH值:7.2-7.4)、稳定的温度(37°C)、较高的相对湿度(95%)、稳定的CO2水平(5%),这就是为什么上述领域的研究员如此热衷于使用方便稳定可靠的二氧化碳培养箱。

此外,由于增加了二氧化碳浓度控制,并且使用微控制器对培养箱温度进行精确控制,使生物细胞,组织等的培养成功率、效率都得到改善。总之,二氧化碳培养箱是普通电热恒温培养箱不可替代的新型培养箱。 

使用者对二氧化碳培养箱的选购最关心的当然就是其可靠性、污染物的控制和使用方便。CO2培养箱主要控制模拟活体内环境相关的3个基本变量:稳定的CO2水平、温度、相对湿度。要有稳定的培养环境,就要考虑这三方面的影响因素,选购时,就应该对这些“重中之重"有一定的了解才能选到适合自己的仪器。但是,其它的一些方面的“小"因素也不能忽略,因为这些都会影响仪器的使用价值和寿命。选购时,就应该从各方面的因素加以考虑。

温度控制:

保持培养箱内恒定的温度是维持细胞健康生长的重要因素。当选购二氧化碳培养箱时,有两种类型的加热结构可供选择:气套式加热和水套式加热。虽然这两种加热系统都是精确和可靠的,但是它们都有着各自的优点和缺点。水套式培养箱是通过一个独立的热水间隔间包围内部的箱体来维持温度恒定的。热水通过自然对流在箱体内循环流动,热量通过辐射传递到箱体内部从而保持了温度的恒定。独特的水套式设计有其优点:水是一种很好的绝热物质,当遇到断电的时候,水套式系统就能更可靠地长久保持培养箱内的温度准确性和稳定性(维持温度恒定的时间是气套式系统的4-5倍)。如果您的实验环境不太稳定(如有用电限制,或者经常停电)并需要保持长时间稳定的培养条件,此时,水套式设计的二氧化碳培养箱就是您最好的选择。而气套式加热系统是通过箱体内的加热器直接对箱内气体进行加热的。气套式设计在箱门频繁开关引起的温度经常性改变的情况下能够迅速恢复箱体内的温度稳定。因此,气套式与水套式相比,具有加热快,温度的恢复比水套式培养箱迅速的特点,特别有利于短期培养以及需要箱门频繁开关的培养。此外,对于使用者来说气套式设计比水套式更简单化(水套式需要对水箱进行加水、清空和清洗,并要经常监控水箱运作的情况)。在购买气套式培养箱时,要注意的是:为了不影响培养,培养箱还应该有一个风扇以保证箱内空气的流通和循环,此装置还有助于箱内温度、CO2和相对湿度的迅速恢复。 

此外,有些类型的二氧化碳培养箱还具备外门及辅助加热系统,这个系统能加热内门,提供给细胞良好的湿度环境,保证细胞渗透压维持平衡,且可有效防止形成冷凝水以保持培养箱内的湿度和温度。如果您的培养环境需要精确的控制,那么这个辅助系统则是必不可少的。

CO2控制:

CO2 浓度探测可通过两种控制系统——红外传感器(IR)或热传导传感器(TC)进行测量。当二氧化碳培养箱的门被打开时,CO2从箱体内漏出,此时传感器就会探测到CO2浓度的降低,并做出及时的反应,重新注入CO2使其恢复到原先预设的水平。热传导传感器(TC)监控CO2浓度的工作原理是通过测量两个电热调节器(一个调节器暴露于箱体环境内,另一个则是封闭的)之间的电阻变化来实现的。箱内CO2浓度的变化会改变两个电热调节器间的电阻,从而促使传感器产生反应以达到调节CO2水平的作用。TC控制系统的一个缺点就是箱内温度和相对湿度的改变会影响传感器的精确度。当箱门被频繁打开时,不仅CO2浓度,温度和相对湿度也会发生很大的波动,因而影响了TC传感器的精度。当需要精确的培养条件和频繁开启培养箱门时,此控制系统就显得不太适用了。红外传感器(IR)作为另一个可选择的控制系统比TC系统具备更精确的CO2控制能力,它是通过一个光学传感器来检测CO2水平的。IR系统包括一个红外发射器和一个传感器,当箱体内的CO2吸收了发射器发射的部分红外线之后,传感器就可以检测出红外线的减少量,而被吸收红外线的量正好对应于箱体内CO2的水平,从而可以得出箱体内CO2的浓度。因为IR系统不会因温度和相对湿度的改变而受到影响,所以它比TC系统更精确,特别适用于需要频繁开启培养箱门的细胞培养。然而,此系统比TC系统更贵,这时就要结合经费预算进行考虑了。


相关文章

替代性蛋白质或为碳减排开辟新天地

荷兰科学家研究认为,到2050年,用替代性蛋白质取代50%的动物产品,可以腾出足够的农业用地生产可再生能源(其能量相当于今天的燃煤发电),同时从大气中去除大量二氧化碳。相关研究近日发表于环境科学期刊《......

催化组合将二氧化碳转为碳纳米纤维

美国能源部布鲁克海文国家实验室和哥伦比亚大学研究人员联合开发了一种耦合电化学和热化学反应的新策略,可将强效温室气体二氧化碳(CO2)转化为碳纳米纤维。这些材料具有广泛的独特性能和许多潜在的长期用途。研......

“十三五”:超额完成二氧化碳减排目标!

为全面有效落实《联合国气候变化框架公约》及其相关决议的要求,12月29日,中国正式向《公约》秘书处提交《中华人民共和国气候变化第四次国家信息通报》和《中华人民共和国气候变化第三次两年更新报告》。两份报......

研究实现高效酸性二氧化碳电还原制甲酸

近日,中国科学技术大学教授高敏锐和唐凯斌课题组合作,研制了一种具有“储液池”结构的片状铋基催化剂,在酸性环境中营造了局域强碱微环境,抑制了析氢副反应,促使二氧化碳向甲酸高效转化。12月12日,相关研究......

高效光热协同催化剂被开发,实现空气中二氧化碳的捕获和转化

近日,哈尔滨工业大学化工与化学学院李英宣课题组开发出高效光-热协同催化剂,实现空气中二氧化碳的捕获和转化,研究成果以《在铂负载镍基金属有机框架上运用双活性位点协同作用实现热辅助红外光催化转化大气中的二......

科普华东理工在线质谱仪在工业发酵过程优化与放大中的应用

1、引言生物药物、食品等工业发酵过程中,尾气氧及尾气二氧化碳的测定对了解发酵过程的宏观生理代谢特性非常重要。通过对尾气氧和二氧化碳的测定,可在线计算出细胞重要生理代谢特征参数氧消耗速率(OUR)二氧化......

升温1.5℃窗口期或将在2030年前结束

伦敦帝国理工学院研究人员领导的一项研究表明,如果不迅速减少二氧化碳排放,到2030年,全球气温上升1.5℃的可能性有50%。这项30日发表在《自然·气候变化》上的研究,是对全球碳预算的最新、最全面的分......

挑战低重力,德国科学家竟然要在月球铺路

德国科学家研究表明,使用激光融化月壤造出更坚硬的层状物质,有可能在月球上创造铺面道路和着陆坪。尽管这些实验是在地球上使用月尘替代物进行的,但这些发现展示了技术的可行性,表明其可在月球上复现。相关研究1......

聚焦“双碳”战略,引领绿色变革

日前,我国迎来碳达峰碳中和重大宣示三周年。2020年9月22日,习近平总书记在第75届联合国大会一般性辩论上宣布,中国二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和。3年来,我......

木卫二表面二氧化碳来自其海洋

美国两个科研团队分别在最新一期《科学》杂志上撰文指出,詹姆斯·韦布空间望远镜提供的数据显示,在木卫二(欧罗巴)上检测到的二氧化碳来自其冰冷外壳下的海洋,这让人们对其海洋中可能潜伏着生命更添期待。科学家......